alloy_trie/hash_builder/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
//! The implementation of the hash builder.
use super::{
nodes::{BranchNodeRef, ExtensionNodeRef, LeafNodeRef},
proof::ProofRetainer,
BranchNodeCompact, Nibbles, TrieMask, EMPTY_ROOT_HASH,
};
use crate::{nodes::RlpNode, proof::ProofNodes, HashMap};
use alloc::vec::Vec;
use alloy_primitives::{keccak256, B256};
use alloy_rlp::EMPTY_STRING_CODE;
use core::cmp;
use tracing::trace;
mod value;
pub use value::{HashBuilderValue, HashBuilderValueRef};
/// A component used to construct the root hash of the trie.
///
/// The primary purpose of a Hash Builder is to build the Merkle proof that is essential for
/// verifying the integrity and authenticity of the trie's contents. It achieves this by
/// constructing the root hash from the hashes of child nodes according to specific rules, depending
/// on the type of the node (branch, extension, or leaf).
///
/// Here's an overview of how the Hash Builder works for each type of node:
/// * Branch Node: The Hash Builder combines the hashes of all the child nodes of the branch node,
/// using a cryptographic hash function like SHA-256. The child nodes' hashes are concatenated
/// and hashed, and the result is considered the hash of the branch node. The process is repeated
/// recursively until the root hash is obtained.
/// * Extension Node: In the case of an extension node, the Hash Builder first encodes the node's
/// shared nibble path, followed by the hash of the next child node. It concatenates these values
/// and then computes the hash of the resulting data, which represents the hash of the extension
/// node.
/// * Leaf Node: For a leaf node, the Hash Builder first encodes the key-path and the value of the
/// leaf node. It then concatenates theĀ encoded key-path and value, and computes the hash of this
/// concatenated data, which represents the hash of the leaf node.
///
/// The Hash Builder operates recursively, starting from the bottom of the trie and working its way
/// up, combining the hashes of child nodes and ultimately generating the root hash. The root hash
/// can then be used to verify the integrity and authenticity of the trie's data by constructing and
/// verifying Merkle proofs.
#[derive(Debug, Clone, Default)]
#[allow(missing_docs)]
pub struct HashBuilder {
pub key: Nibbles,
pub value: HashBuilderValue,
pub stack: Vec<RlpNode>,
pub groups: Vec<TrieMask>,
pub tree_masks: Vec<TrieMask>,
pub hash_masks: Vec<TrieMask>,
pub stored_in_database: bool,
pub updated_branch_nodes: Option<HashMap<Nibbles, BranchNodeCompact>>,
pub proof_retainer: Option<ProofRetainer>,
pub rlp_buf: Vec<u8>,
}
impl HashBuilder {
/// Enables the Hash Builder to store updated branch nodes.
///
/// Call [HashBuilder::split] to get the updates to branch nodes.
pub fn with_updates(mut self, retain_updates: bool) -> Self {
self.set_updates(retain_updates);
self
}
/// Enable specified proof retainer.
pub fn with_proof_retainer(mut self, retainer: ProofRetainer) -> Self {
self.proof_retainer = Some(retainer);
self
}
/// Enables the Hash Builder to store updated branch nodes.
///
/// Call [HashBuilder::split] to get the updates to branch nodes.
pub fn set_updates(&mut self, retain_updates: bool) {
if retain_updates {
self.updated_branch_nodes = Some(HashMap::default());
}
}
/// Splits the [HashBuilder] into a [HashBuilder] and hash builder updates.
pub fn split(mut self) -> (Self, HashMap<Nibbles, BranchNodeCompact>) {
let updates = self.updated_branch_nodes.take();
(self, updates.unwrap_or_default())
}
/// Take and return retained proof nodes.
pub fn take_proof_nodes(&mut self) -> ProofNodes {
self.proof_retainer.take().map(ProofRetainer::into_proof_nodes).unwrap_or_default()
}
/// The number of total updates accrued.
/// Returns `0` if [Self::with_updates] was not called.
pub fn updates_len(&self) -> usize {
self.updated_branch_nodes.as_ref().map(|u| u.len()).unwrap_or(0)
}
/// Print the current stack of the Hash Builder.
#[cfg(feature = "std")]
pub fn print_stack(&self) {
println!("============ STACK ===============");
for item in &self.stack {
println!("{}", alloy_primitives::hex::encode(item));
}
println!("============ END STACK ===============");
}
/// Adds a new leaf element and its value to the trie hash builder.
///
/// # Panics
///
/// Panics if the new key does not come after the current key.
pub fn add_leaf(&mut self, key: Nibbles, value: &[u8]) {
assert!(key > self.key, "add_leaf key {:?} self.key {:?}", key, self.key);
self.add_leaf_unchecked(key, value);
}
/// Adds a new leaf element and its value to the trie hash builder,
/// without checking the order of the new key. This is only for
/// performance-critical usage that guarantees keys are inserted
/// in sorted order.
pub fn add_leaf_unchecked(&mut self, key: Nibbles, value: &[u8]) {
debug_assert!(key > self.key, "add_leaf_unchecked key {:?} self.key {:?}", key, self.key);
if !self.key.is_empty() {
self.update(&key);
}
self.set_key_value(key, HashBuilderValueRef::Bytes(value));
}
/// Adds a new branch element and its hash to the trie hash builder.
pub fn add_branch(&mut self, key: Nibbles, value: B256, stored_in_database: bool) {
assert!(
key > self.key || (self.key.is_empty() && key.is_empty()),
"add_branch key {:?} self.key {:?}",
key,
self.key
);
if !self.key.is_empty() {
self.update(&key);
} else if key.is_empty() {
self.stack.push(RlpNode::word_rlp(&value));
}
self.set_key_value(key, HashBuilderValueRef::Hash(&value));
self.stored_in_database = stored_in_database;
}
/// Returns the current root hash of the trie builder.
pub fn root(&mut self) -> B256 {
// Clears the internal state
if !self.key.is_empty() {
self.update(&Nibbles::default());
self.key.clear();
self.value.clear();
}
let root = self.current_root();
if root == EMPTY_ROOT_HASH {
if let Some(proof_retainer) = self.proof_retainer.as_mut() {
proof_retainer.retain(&Nibbles::default(), &[EMPTY_STRING_CODE])
}
}
root
}
#[inline]
fn set_key_value(&mut self, key: Nibbles, value: HashBuilderValueRef<'_>) {
self.log_key_value("old value");
self.key = key;
self.value.set_from_ref(value);
self.log_key_value("new value");
}
fn log_key_value(&self, msg: &str) {
trace!(target: "trie::hash_builder",
key = ?self.key,
value = ?self.value,
"{msg}",
);
}
fn current_root(&self) -> B256 {
if let Some(node_ref) = self.stack.last() {
if let Some(hash) = node_ref.as_hash() {
hash
} else {
keccak256(node_ref)
}
} else {
EMPTY_ROOT_HASH
}
}
/// Given a new element, it appends it to the stack and proceeds to loop through the stack state
/// and convert the nodes it can into branch / extension nodes and hash them. This ensures
/// that the top of the stack always contains the merkle root corresponding to the trie
/// built so far.
fn update(&mut self, succeeding: &Nibbles) {
let mut build_extensions = false;
// current / self.key is always the latest added element in the trie
let mut current = self.key.clone();
debug_assert!(!current.is_empty());
trace!(target: "trie::hash_builder", ?current, ?succeeding, "updating merkle tree");
let mut i = 0usize;
loop {
let _span = tracing::trace_span!(target: "trie::hash_builder", "loop", i, ?current, build_extensions).entered();
let preceding_exists = !self.groups.is_empty();
let preceding_len = self.groups.len().saturating_sub(1);
let common_prefix_len = succeeding.common_prefix_length(current.as_slice());
let len = cmp::max(preceding_len, common_prefix_len);
assert!(len < current.len(), "len {} current.len {}", len, current.len());
trace!(
target: "trie::hash_builder",
?len,
?common_prefix_len,
?preceding_len,
preceding_exists,
"prefix lengths after comparing keys"
);
// Adjust the state masks for branch calculation
let extra_digit = current[len];
if self.groups.len() <= len {
let new_len = len + 1;
trace!(target: "trie::hash_builder", new_len, old_len = self.groups.len(), "scaling state masks to fit");
self.groups.resize(new_len, TrieMask::default());
}
self.groups[len] |= TrieMask::from_nibble(extra_digit);
trace!(
target: "trie::hash_builder",
?extra_digit,
groups = ?self.groups,
);
// Adjust the tree masks for exporting to the DB
if self.tree_masks.len() < current.len() {
self.resize_masks(current.len());
}
let mut len_from = len;
if !succeeding.is_empty() || preceding_exists {
len_from += 1;
}
trace!(target: "trie::hash_builder", "skipping {len_from} nibbles");
// The key without the common prefix
let short_node_key = current.slice(len_from..);
trace!(target: "trie::hash_builder", ?short_node_key);
// Concatenate the 2 nodes together
if !build_extensions {
match self.value.as_ref() {
HashBuilderValueRef::Bytes(leaf_value) => {
let leaf_node = LeafNodeRef::new(&short_node_key, leaf_value);
self.rlp_buf.clear();
let rlp = leaf_node.rlp(&mut self.rlp_buf);
trace!(
target: "trie::hash_builder",
?leaf_node,
?rlp,
"pushing leaf node",
);
self.stack.push(rlp);
self.retain_proof_from_buf(¤t.slice(..len_from));
}
HashBuilderValueRef::Hash(hash) => {
trace!(target: "trie::hash_builder", ?hash, "pushing branch node hash");
self.stack.push(RlpNode::word_rlp(hash));
if self.stored_in_database {
self.tree_masks[current.len() - 1] |=
TrieMask::from_nibble(current.last().unwrap());
}
self.hash_masks[current.len() - 1] |=
TrieMask::from_nibble(current.last().unwrap());
build_extensions = true;
}
}
}
if build_extensions && !short_node_key.is_empty() {
self.update_masks(¤t, len_from);
let stack_last = self.stack.pop().expect("there should be at least one stack item");
let extension_node = ExtensionNodeRef::new(&short_node_key, &stack_last);
self.rlp_buf.clear();
let rlp = extension_node.rlp(&mut self.rlp_buf);
trace!(
target: "trie::hash_builder",
?extension_node,
?rlp,
"pushing extension node",
);
self.stack.push(rlp);
self.retain_proof_from_buf(¤t.slice(..len_from));
self.resize_masks(len_from);
}
if preceding_len <= common_prefix_len && !succeeding.is_empty() {
trace!(target: "trie::hash_builder", "no common prefix to create branch nodes from, returning");
return;
}
// Insert branch nodes in the stack
if !succeeding.is_empty() || preceding_exists {
// Pushes the corresponding branch node to the stack
let children = self.push_branch_node(¤t, len);
// Need to store the branch node in an efficient format outside of the hash builder
self.store_branch_node(¤t, len, children);
}
self.groups.resize(len, TrieMask::default());
self.resize_masks(len);
if preceding_len == 0 {
trace!(target: "trie::hash_builder", "0 or 1 state masks means we have no more elements to process");
return;
}
current.truncate(preceding_len);
trace!(target: "trie::hash_builder", ?current, "truncated nibbles to {} bytes", preceding_len);
trace!(target: "trie::hash_builder", groups = ?self.groups, "popping empty state masks");
while self.groups.last() == Some(&TrieMask::default()) {
self.groups.pop();
}
build_extensions = true;
i += 1;
}
}
/// Given the size of the longest common prefix, it proceeds to create a branch node
/// from the state mask and existing stack state, and store its RLP to the top of the stack,
/// after popping all the relevant elements from the stack.
///
/// Returns the hashes of the children of the branch node, only if `updated_branch_nodes` is
/// enabled.
fn push_branch_node(&mut self, current: &Nibbles, len: usize) -> Vec<B256> {
let state_mask = self.groups[len];
let hash_mask = self.hash_masks[len];
let branch_node = BranchNodeRef::new(&self.stack, state_mask);
// Avoid calculating this value if it's not needed.
let children = if self.updated_branch_nodes.is_some() {
branch_node.child_hashes(hash_mask).collect()
} else {
vec![]
};
self.rlp_buf.clear();
let rlp = branch_node.rlp(&mut self.rlp_buf);
self.retain_proof_from_buf(¤t.slice(..len));
// Clears the stack from the branch node elements
let first_child_idx = self.stack.len() - state_mask.count_ones() as usize;
trace!(
target: "trie::hash_builder",
new_len = first_child_idx,
old_len = self.stack.len(),
"resizing stack to prepare branch node"
);
self.stack.resize_with(first_child_idx, Default::default);
trace!(target: "trie::hash_builder", ?rlp, "pushing branch node with {state_mask:?} mask from stack");
self.stack.push(rlp);
children
}
/// Given the current nibble prefix and the highest common prefix length, proceeds
/// to update the masks for the next level and store the branch node and the
/// masks in the database. We will use that when consuming the intermediate nodes
/// from the database to efficiently build the trie.
fn store_branch_node(&mut self, current: &Nibbles, len: usize, children: Vec<B256>) {
if len > 0 {
let parent_index = len - 1;
self.hash_masks[parent_index] |= TrieMask::from_nibble(current[parent_index]);
}
let store_in_db_trie = !self.tree_masks[len].is_empty() || !self.hash_masks[len].is_empty();
if store_in_db_trie {
if len > 0 {
let parent_index = len - 1;
self.tree_masks[parent_index] |= TrieMask::from_nibble(current[parent_index]);
}
if self.updated_branch_nodes.is_some() {
let common_prefix = current.slice(..len);
let node = BranchNodeCompact::new(
self.groups[len],
self.tree_masks[len],
self.hash_masks[len],
children,
(len == 0).then(|| self.current_root()),
);
trace!(target: "trie::hash_builder", ?node, "intermediate node");
self.updated_branch_nodes.as_mut().unwrap().insert(common_prefix, node);
}
}
}
fn retain_proof_from_buf(&mut self, prefix: &Nibbles) {
if let Some(proof_retainer) = self.proof_retainer.as_mut() {
proof_retainer.retain(prefix, &self.rlp_buf)
}
}
fn update_masks(&mut self, current: &Nibbles, len_from: usize) {
if len_from > 0 {
let flag = TrieMask::from_nibble(current[len_from - 1]);
self.hash_masks[len_from - 1] &= !flag;
if !self.tree_masks[current.len() - 1].is_empty() {
self.tree_masks[len_from - 1] |= flag;
}
}
}
fn resize_masks(&mut self, new_len: usize) {
trace!(
target: "trie::hash_builder",
new_len,
old_tree_mask_len = self.tree_masks.len(),
old_hash_mask_len = self.hash_masks.len(),
"resizing tree/hash masks"
);
self.tree_masks.resize(new_len, TrieMask::default());
self.hash_masks.resize(new_len, TrieMask::default());
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{nodes::LeafNode, triehash_trie_root};
use alloc::collections::BTreeMap;
use alloy_primitives::{b256, hex, U256};
use alloy_rlp::Encodable;
// Hashes the keys, RLP encodes the values, compares the trie builder with the upstream root.
fn assert_hashed_trie_root<'a, I, K>(iter: I)
where
I: Iterator<Item = (K, &'a U256)>,
K: AsRef<[u8]> + Ord,
{
let hashed = iter
.map(|(k, v)| (keccak256(k.as_ref()), alloy_rlp::encode(v).to_vec()))
// Collect into a btree map to sort the data
.collect::<BTreeMap<_, _>>();
let mut hb = HashBuilder::default();
hashed.iter().for_each(|(key, val)| {
let nibbles = Nibbles::unpack(key);
hb.add_leaf(nibbles, val);
});
assert_eq!(hb.root(), triehash_trie_root(&hashed));
}
// No hashing involved
fn assert_trie_root<I, K, V>(iter: I)
where
I: IntoIterator<Item = (K, V)>,
K: AsRef<[u8]> + Ord,
V: AsRef<[u8]>,
{
let mut hb = HashBuilder::default();
let data = iter.into_iter().collect::<BTreeMap<_, _>>();
data.iter().for_each(|(key, val)| {
let nibbles = Nibbles::unpack(key);
hb.add_leaf(nibbles, val.as_ref());
});
assert_eq!(hb.root(), triehash_trie_root(data));
}
#[test]
fn empty() {
assert_eq!(HashBuilder::default().root(), EMPTY_ROOT_HASH);
}
#[test]
#[cfg(feature = "arbitrary")]
#[cfg_attr(miri, ignore = "no proptest")]
fn arbitrary_hashed_root() {
use proptest::prelude::*;
proptest!(|(state: BTreeMap<B256, U256>)| {
assert_hashed_trie_root(state.iter());
});
}
#[test]
fn test_generates_branch_node() {
let mut hb = HashBuilder::default().with_updates(true);
// We have 1 branch node update to be stored at 0x01, indicated by the first nibble.
// That branch root node has 4 children:
// - Leaf at nibble `0`: It has an empty value.
// - Branch at nibble `1`: It has 2 leaf nodes with empty values at nibbles `0` and `1`.
// - Branch at nibble `2`: It has 2 leaf nodes with empty values at nibbles `0` and `2`.
// - Leaf at nibble `3`: It has an empty value.
//
// This is enough information to construct the intermediate node value:
// 1. State Mask: 0b1111. All children of the branch node set at nibbles `0`, `1`, `2` and
// `3`.
// 2. Hash Mask: 0b0110. Of the above items, nibbles `1` and `2` correspond to children that
// are branch nodes.
// 3. Tree Mask: 0b0000. None of the children are stored in the database (yet).
// 4. Hashes: Hashes of the 2 sub-branch roots, at nibbles `1` and `2`. Calculated by
// hashing the 0th and 1st element for the branch at nibble `1` , and the 0th and 2nd
// element for the branch at nibble `2`. This basically means that every
// BranchNodeCompact is capable of storing up to 2 levels deep of nodes (?).
let data = BTreeMap::from([
(
// Leaf located at nibble `0` of the branch root node that doesn't result in
// creating another branch node
hex!("1000000000000000000000000000000000000000000000000000000000000000").to_vec(),
Vec::new(),
),
(
hex!("1100000000000000000000000000000000000000000000000000000000000000").to_vec(),
Vec::new(),
),
(
hex!("1110000000000000000000000000000000000000000000000000000000000000").to_vec(),
Vec::new(),
),
(
hex!("1200000000000000000000000000000000000000000000000000000000000000").to_vec(),
Vec::new(),
),
(
hex!("1220000000000000000000000000000000000000000000000000000000000000").to_vec(),
Vec::new(),
),
(
// Leaf located at nibble `3` of the branch root node that doesn't result in
// creating another branch node
hex!("1320000000000000000000000000000000000000000000000000000000000000").to_vec(),
Vec::new(),
),
]);
data.iter().for_each(|(key, val)| {
let nibbles = Nibbles::unpack(key);
hb.add_leaf(nibbles, val.as_ref());
});
let _root = hb.root();
let (_, updates) = hb.split();
let update = updates.get(&Nibbles::from_nibbles_unchecked(hex!("01"))).unwrap();
// Nibbles 0, 1, 2, 3 have children
assert_eq!(update.state_mask, TrieMask::new(0b1111));
// None of the children are stored in the database
assert_eq!(update.tree_mask, TrieMask::new(0b0000));
// Children under nibbles `1` and `2` are branche nodes with `hashes`
assert_eq!(update.hash_mask, TrieMask::new(0b0110));
// Calculated when running the hash builder
assert_eq!(update.hashes.len(), 2);
assert_eq!(_root, triehash_trie_root(data));
}
#[test]
fn test_root_raw_data() {
let data = [
(hex!("646f").to_vec(), hex!("76657262").to_vec()),
(hex!("676f6f64").to_vec(), hex!("7075707079").to_vec()),
(hex!("676f6b32").to_vec(), hex!("7075707079").to_vec()),
(hex!("676f6b34").to_vec(), hex!("7075707079").to_vec()),
];
assert_trie_root(data);
}
#[test]
fn test_root_rlp_hashed_data() {
let data: HashMap<_, _, _> = HashMap::from([
(B256::with_last_byte(1), U256::from(2)),
(B256::with_last_byte(3), U256::from(4)),
]);
assert_hashed_trie_root(data.iter());
}
#[test]
fn test_root_known_hash() {
let root_hash = b256!("45596e474b536a6b4d64764e4f75514d544577646c414e684271706871446456");
let mut hb = HashBuilder::default();
hb.add_branch(Nibbles::default(), root_hash, false);
assert_eq!(hb.root(), root_hash);
}
#[test]
fn manual_branch_node_ok() {
let raw_input = vec![
(hex!("646f").to_vec(), hex!("76657262").to_vec()),
(hex!("676f6f64").to_vec(), hex!("7075707079").to_vec()),
];
let expected = triehash_trie_root(raw_input.clone());
// We create the hash builder and add the leaves
let mut hb = HashBuilder::default();
for (key, val) in &raw_input {
hb.add_leaf(Nibbles::unpack(key), val.as_slice());
}
// Manually create the branch node that should be there after the first 2 leaves are added.
// Skip the 0th element given in this example they have a common prefix and will
// collapse to a Branch node.
let leaf1 = LeafNode::new(Nibbles::unpack(&raw_input[0].0[1..]), raw_input[0].1.clone());
let leaf2 = LeafNode::new(Nibbles::unpack(&raw_input[1].0[1..]), raw_input[1].1.clone());
let mut branch: [&dyn Encodable; 17] = [b""; 17];
// We set this to `4` and `7` because that mathces the 2nd element of the corresponding
// leaves. We set this to `7` because the 2nd element of Leaf 1 is `7`.
branch[4] = &leaf1;
branch[7] = &leaf2;
let mut branch_node_rlp = Vec::new();
alloy_rlp::encode_list::<_, dyn Encodable>(&branch, &mut branch_node_rlp);
let branch_node_hash = keccak256(branch_node_rlp);
let mut hb2 = HashBuilder::default();
// Insert the branch with the `0x6` shared prefix.
hb2.add_branch(Nibbles::from_nibbles_unchecked([0x6]), branch_node_hash, false);
assert_eq!(hb.root(), expected);
assert_eq!(hb2.root(), expected);
}
}