1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
//! Procedural macros for bytecheck.
#![deny(
rust_2018_compatibility,
rust_2018_idioms,
future_incompatible,
nonstandard_style,
unused,
clippy::all
)]
use proc_macro2::{Group, Span, TokenStream, TokenTree};
use quote::{quote, quote_spanned};
use syn::{
parse_macro_input, parse_quote, punctuated::Punctuated, spanned::Spanned, AttrStyle, Data,
DeriveInput, Error, Fields, Ident, Index, Lit, LitStr, Meta, NestedMeta, Path, Token,
WherePredicate,
};
#[derive(Default)]
struct Repr {
pub transparent: Option<Path>,
pub packed: Option<Path>,
pub c: Option<Path>,
pub int: Option<Path>,
}
#[derive(Default)]
struct Attributes {
pub repr: Repr,
pub bound: Option<LitStr>,
pub bytecheck_crate: Option<Path>,
}
fn parse_check_bytes_attributes(attributes: &mut Attributes, meta: &Meta) -> Result<(), Error> {
match meta {
Meta::NameValue(meta) => {
if meta.path.is_ident("bound") {
if let Lit::Str(ref lit_str) = meta.lit {
if attributes.bound.is_none() {
attributes.bound = Some(lit_str.clone());
Ok(())
} else {
Err(Error::new_spanned(
meta,
"check_bytes bound already specified",
))
}
} else {
Err(Error::new_spanned(
&meta.lit,
"bound arguments must be a string",
))
}
} else if meta.path.is_ident("crate") {
if let Lit::Str(ref lit_str) = meta.lit {
if attributes.bytecheck_crate.is_none() {
let tokens = respan(syn::parse_str(&lit_str.value())?, lit_str.span());
let parsed: Path = syn::parse2(tokens)?;
attributes.bytecheck_crate = Some(parsed);
Ok(())
} else {
Err(Error::new_spanned(
meta,
"check_bytes crate already specified",
))
}
} else {
Err(Error::new_spanned(
&meta.lit,
"crate argument must be a string",
))
}
} else {
Err(Error::new_spanned(
&meta.path,
"unrecognized check_bytes argument",
))
}
}
_ => Err(Error::new_spanned(
meta,
"unrecognized check_bytes argument",
)),
}
}
fn parse_attributes(input: &DeriveInput) -> Result<Attributes, Error> {
let mut result = Attributes::default();
for a in input.attrs.iter() {
if let AttrStyle::Outer = a.style {
if let Ok(Meta::List(meta)) = a.parse_meta() {
if meta.path.is_ident("check_bytes") {
for nested in meta.nested.iter() {
if let NestedMeta::Meta(meta) = nested {
parse_check_bytes_attributes(&mut result, meta)?;
} else {
return Err(Error::new_spanned(
nested,
"check_bytes parameters must be metas",
));
}
}
} else if meta.path.is_ident("repr") {
for n in meta.nested.iter() {
if let NestedMeta::Meta(Meta::Path(path)) = n {
if path.is_ident("transparent") {
result.repr.transparent = Some(path.clone());
} else if path.is_ident("packed") {
result.repr.packed = Some(path.clone());
} else if path.is_ident("C") {
result.repr.c = Some(path.clone());
} else if path.is_ident("align") {
// Ignore alignment modifiers
} else {
let is_int_repr = path.is_ident("i8")
|| path.is_ident("i16")
|| path.is_ident("i32")
|| path.is_ident("i64")
|| path.is_ident("i128")
|| path.is_ident("u8")
|| path.is_ident("u16")
|| path.is_ident("u32")
|| path.is_ident("u64")
|| path.is_ident("u128");
if is_int_repr {
result.repr.int = Some(path.clone());
} else {
return Err(Error::new_spanned(
path,
"invalid repr, available reprs are transparent, C, i* and u*",
));
}
}
}
}
}
}
}
}
Ok(result)
}
/// Derives `CheckBytes` for the labeled type.
///
/// Additional arguments can be specified using the `#[check_bytes(...)]` attribute:
///
/// - `bound = "..."`: Adds additional bounds to the `CheckBytes` implementation. This can be
/// especially useful when dealing with recursive structures, where bounds may need to be omitted
/// to prevent recursive type definitions.
///
/// This derive macro automatically adds a type bound `field: CheckBytes<__C>` for each field type.
/// This can cause an overflow while evaluating trait bounds if the structure eventually references
/// its own type, as the implementation of `CheckBytes` for a struct depends on each field type
/// implementing it as well. Adding the attribute `#[omit_bounds]` to a field will suppress this
/// trait bound and allow recursive structures. This may be too coarse for some types, in which case
/// additional type bounds may be required with `bound = "..."`.
#[proc_macro_derive(CheckBytes, attributes(check_bytes, omit_bounds))]
pub fn check_bytes_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
match derive_check_bytes(parse_macro_input!(input as DeriveInput)) {
Ok(result) => result.into(),
Err(e) => e.to_compile_error().into(),
}
}
fn derive_check_bytes(mut input: DeriveInput) -> Result<TokenStream, Error> {
let attributes = parse_attributes(&input)?;
let mut impl_input_generics = input.generics.clone();
let impl_where_clause = impl_input_generics.make_where_clause();
if let Some(ref bounds) = attributes.bound {
let clauses =
bounds.parse_with(Punctuated::<WherePredicate, Token![,]>::parse_terminated)?;
for clause in clauses {
impl_where_clause.predicates.push(clause);
}
}
impl_input_generics
.params
.insert(0, parse_quote! { __C: ?Sized });
let name = &input.ident;
let (impl_generics, _, impl_where_clause) = impl_input_generics.split_for_impl();
let impl_where_clause = impl_where_clause.unwrap();
input.generics.make_where_clause();
let (struct_generics, ty_generics, where_clause) = input.generics.split_for_impl();
let where_clause = where_clause.unwrap();
let check_bytes_impl = match input.data {
Data::Struct(ref data) => match data.fields {
Fields::Named(ref fields) => {
let mut check_where = impl_where_clause.clone();
for field in fields
.named
.iter()
.filter(|f| !f.attrs.iter().any(|a| a.path.is_ident("omit_bounds")))
{
let ty = &field.ty;
check_where
.predicates
.push(parse_quote! { #ty: CheckBytes<__C> });
}
let field_checks = fields.named.iter().map(|f| {
let field = &f.ident;
let ty = &f.ty;
quote_spanned! { ty.span() =>
<#ty as CheckBytes<__C>>::check_bytes(
::core::ptr::addr_of!((*value).#field),
context
).map_err(|e| StructCheckError {
field_name: stringify!(#field),
inner: ErrorBox::new(e),
})?;
}
});
quote! {
#[automatically_derived]
impl #impl_generics CheckBytes<__C> for #name #ty_generics #check_where {
type Error = StructCheckError;
unsafe fn check_bytes<'__bytecheck>(
value: *const Self,
context: &mut __C,
) -> ::core::result::Result<&'__bytecheck Self, StructCheckError> {
let bytes = value.cast::<u8>();
#(#field_checks)*
Ok(&*value)
}
}
}
}
Fields::Unnamed(ref fields) => {
let mut check_where = impl_where_clause.clone();
for field in fields
.unnamed
.iter()
.filter(|f| !f.attrs.iter().any(|a| a.path.is_ident("omit_bounds")))
{
let ty = &field.ty;
check_where
.predicates
.push(parse_quote! { #ty: CheckBytes<__C> });
}
let field_checks = fields.unnamed.iter().enumerate().map(|(i, f)| {
let ty = &f.ty;
let index = Index::from(i);
quote_spanned! { ty.span() =>
<#ty as CheckBytes<__C>>::check_bytes(
::core::ptr::addr_of!((*value).#index),
context
).map_err(|e| TupleStructCheckError {
field_index: #i,
inner: ErrorBox::new(e),
})?;
}
});
quote! {
#[automatically_derived]
impl #impl_generics CheckBytes<__C> for #name #ty_generics #check_where {
type Error = TupleStructCheckError;
unsafe fn check_bytes<'__bytecheck>(
value: *const Self,
context: &mut __C,
) -> ::core::result::Result<&'__bytecheck Self, TupleStructCheckError> {
let bytes = value.cast::<u8>();
#(#field_checks)*
Ok(&*value)
}
}
}
}
Fields::Unit => {
quote! {
#[automatically_derived]
impl #impl_generics CheckBytes<__C> for #name #ty_generics #impl_where_clause {
type Error = Infallible;
unsafe fn check_bytes<'__bytecheck>(
value: *const Self,
context: &mut __C,
) -> ::core::result::Result<&'__bytecheck Self, Infallible> {
Ok(&*value)
}
}
}
}
},
Data::Enum(ref data) => {
if let Some(path) = attributes.repr.transparent.or(attributes.repr.packed) {
return Err(Error::new_spanned(
path,
"enums implementing CheckBytes cannot be repr(transparent) or repr(packed)",
));
}
let repr = match attributes.repr.int {
None => {
return Err(Error::new(
input.span(),
"enums implementing CheckBytes must be repr(Int)",
));
}
Some(ref repr) => repr,
};
let mut check_where = impl_where_clause.clone();
for v in data.variants.iter() {
match v.fields {
Fields::Named(ref fields) => {
for field in fields
.named
.iter()
.filter(|f| !f.attrs.iter().any(|a| a.path.is_ident("omit_bounds")))
{
let ty = &field.ty;
check_where
.predicates
.push(parse_quote! { #ty: CheckBytes<__C> });
}
}
Fields::Unnamed(ref fields) => {
for field in fields
.unnamed
.iter()
.filter(|f| !f.attrs.iter().any(|a| a.path.is_ident("omit_bounds")))
{
let ty = &field.ty;
check_where
.predicates
.push(parse_quote! { #ty: CheckBytes<__C> });
}
}
Fields::Unit => (),
}
}
let tag_variant_defs = data.variants.iter().map(|v| {
let variant = &v.ident;
if let Some((_, expr)) = &v.discriminant {
quote_spanned! { variant.span() => #variant = #expr }
} else {
quote_spanned! { variant.span() => #variant }
}
});
let discriminant_const_defs = data.variants.iter().map(|v| {
let variant = &v.ident;
quote! {
#[allow(non_upper_case_globals)]
const #variant: #repr = Tag::#variant as #repr;
}
});
let tag_variant_values = data.variants.iter().map(|v| {
let name = &v.ident;
quote_spanned! { name.span() => Discriminant::#name }
});
let variant_structs = data.variants.iter().map(|v| {
let variant = &v.ident;
let variant_name = Ident::new(&format!("Variant{}", variant), v.span());
match v.fields {
Fields::Named(ref fields) => {
let fields = fields.named.iter().map(|f| {
let name = &f.ident;
let ty = &f.ty;
quote_spanned! { f.span() => #name: #ty }
});
quote_spanned! { name.span() =>
#[repr(C)]
struct #variant_name #struct_generics #where_clause {
__tag: Tag,
#(#fields,)*
__phantom: PhantomData<#name #ty_generics>,
}
}
}
Fields::Unnamed(ref fields) => {
let fields = fields.unnamed.iter().map(|f| {
let ty = &f.ty;
quote_spanned! { f.span() => #ty }
});
quote_spanned! { name.span() =>
#[repr(C)]
struct #variant_name #struct_generics (
Tag,
#(#fields,)*
PhantomData<#name #ty_generics>
) #where_clause;
}
}
Fields::Unit => quote! {},
}
});
let check_arms = data.variants.iter().map(|v| {
let variant = &v.ident;
let variant_name = Ident::new(&format!("Variant{}", variant), v.span());
match v.fields {
Fields::Named(ref fields) => {
let checks = fields.named.iter().map(|f| {
let name = &f.ident;
let ty = &f.ty;
quote! {
<#ty as CheckBytes<__C>>::check_bytes(
::core::ptr::addr_of!((*value).#name),
context
).map_err(|e| EnumCheckError::InvalidStruct {
variant_name: stringify!(#variant),
inner: StructCheckError {
field_name: stringify!(#name),
inner: ErrorBox::new(e),
},
})?;
}
});
quote_spanned! { variant.span() => {
let value = value.cast::<#variant_name #ty_generics>();
#(#checks)*
} }
}
Fields::Unnamed(ref fields) => {
let checks = fields.unnamed.iter().enumerate().map(|(i, f)| {
let ty = &f.ty;
let index = Index::from(i + 1);
quote! {
<#ty as CheckBytes<__C>>::check_bytes(
::core::ptr::addr_of!((*value).#index),
context
).map_err(|e| EnumCheckError::InvalidTuple {
variant_name: stringify!(#variant),
inner: TupleStructCheckError {
field_index: #i,
inner: ErrorBox::new(e),
},
})?;
}
});
quote_spanned! { variant.span() => {
let value = value.cast::<#variant_name #ty_generics>();
#(#checks)*
} }
}
Fields::Unit => quote_spanned! { name.span() => (), },
}
});
quote! {
#[repr(#repr)]
enum Tag {
#(#tag_variant_defs,)*
}
struct Discriminant;
#[automatically_derived]
impl Discriminant {
#(#discriminant_const_defs)*
}
#(#variant_structs)*
#[automatically_derived]
impl #impl_generics CheckBytes<__C> for #name #ty_generics #check_where {
type Error = EnumCheckError<#repr>;
unsafe fn check_bytes<'__bytecheck>(
value: *const Self,
context: &mut __C,
) -> ::core::result::Result<&'__bytecheck Self, EnumCheckError<#repr>> {
let tag = *value.cast::<#repr>();
match tag {
#(#tag_variant_values => #check_arms)*
_ => return Err(EnumCheckError::InvalidTag(tag)),
}
Ok(&*value)
}
}
}
}
Data::Union(_) => {
return Err(Error::new(
input.span(),
"CheckBytes cannot be derived for unions",
));
}
};
// Default to `bytecheck`, rather than `::bytecheck`,
// to allow providing it from a reexport, e.g. `use rkyv::bytecheck;`.
let bytecheck_crate = attributes
.bytecheck_crate
.unwrap_or(parse_quote!(bytecheck));
Ok(quote! {
#[allow(unused_results)]
const _: () = {
use ::core::{convert::Infallible, marker::PhantomData};
use #bytecheck_crate::{
CheckBytes,
EnumCheckError,
ErrorBox,
StructCheckError,
TupleStructCheckError,
};
#check_bytes_impl
};
})
}
fn respan(stream: TokenStream, span: Span) -> TokenStream {
stream
.into_iter()
.map(|token| respan_token(token, span))
.collect()
}
fn respan_token(mut token: TokenTree, span: Span) -> TokenTree {
if let TokenTree::Group(g) = &mut token {
*g = Group::new(g.delimiter(), respan(g.stream(), span));
}
token.set_span(span);
token
}