cranelift_codegen/machinst/
buffer.rs

1//! In-memory representation of compiled machine code, with labels and fixups to
2//! refer to those labels. Handles constant-pool island insertion and also
3//! veneer insertion for out-of-range jumps.
4//!
5//! This code exists to solve three problems:
6//!
7//! - Branch targets for forward branches are not known until later, when we
8//!   emit code in a single pass through the instruction structs.
9//!
10//! - On many architectures, address references or offsets have limited range.
11//!   For example, on AArch64, conditional branches can only target code +/- 1MB
12//!   from the branch itself.
13//!
14//! - The lowering of control flow from the CFG-with-edges produced by
15//!   [BlockLoweringOrder](super::BlockLoweringOrder), combined with many empty
16//!   edge blocks when the register allocator does not need to insert any
17//!   spills/reloads/moves in edge blocks, results in many suboptimal branch
18//!   patterns. The lowering also pays no attention to block order, and so
19//!   two-target conditional forms (cond-br followed by uncond-br) can often by
20//!   avoided because one of the targets is the fallthrough. There are several
21//!   cases here where we can simplify to use fewer branches.
22//!
23//! This "buffer" implements a single-pass code emission strategy (with a later
24//! "fixup" pass, but only through recorded fixups, not all instructions). The
25//! basic idea is:
26//!
27//! - Emit branches as they are, including two-target (cond/uncond) compound
28//!   forms, but with zero offsets and optimistically assuming the target will be
29//!   in range. Record the "fixup" for later. Targets are denoted instead by
30//!   symbolic "labels" that are then bound to certain offsets in the buffer as
31//!   we emit code. (Nominally, there is a label at the start of every basic
32//!   block.)
33//!
34//! - As we do this, track the offset in the buffer at which the first label
35//!   reference "goes out of range". We call this the "deadline". If we reach the
36//!   deadline and we still have not bound the label to which an unresolved branch
37//!   refers, we have a problem!
38//!
39//! - To solve this problem, we emit "islands" full of "veneers". An island is
40//!   simply a chunk of code inserted in the middle of the code actually produced
41//!   by the emitter (e.g., vcode iterating over instruction structs). The emitter
42//!   has some awareness of this: it either asks for an island between blocks, so
43//!   it is not accidentally executed, or else it emits a branch around the island
44//!   when all other options fail (see `Inst::EmitIsland` meta-instruction).
45//!
46//! - A "veneer" is an instruction (or sequence of instructions) in an "island"
47//!   that implements a longer-range reference to a label. The idea is that, for
48//!   example, a branch with a limited range can branch to a "veneer" instead,
49//!   which is simply a branch in a form that can use a longer-range reference. On
50//!   AArch64, for example, conditionals have a +/- 1 MB range, but a conditional
51//!   can branch to an unconditional branch which has a +/- 128 MB range. Hence, a
52//!   conditional branch's label reference can be fixed up with a "veneer" to
53//!   achieve a longer range.
54//!
55//! - To implement all of this, we require the backend to provide a `LabelUse`
56//!   type that implements a trait. This is nominally an enum that records one of
57//!   several kinds of references to an offset in code -- basically, a relocation
58//!   type -- and will usually correspond to different instruction formats. The
59//!   `LabelUse` implementation specifies the maximum range, how to patch in the
60//!   actual label location when known, and how to generate a veneer to extend the
61//!   range.
62//!
63//! That satisfies label references, but we still may have suboptimal branch
64//! patterns. To clean up the branches, we do a simple "peephole"-style
65//! optimization on the fly. To do so, the emitter (e.g., `Inst::emit()`)
66//! informs the buffer of branches in the code and, in the case of conditionals,
67//! the code that would have been emitted to invert this branch's condition. We
68//! track the "latest branches": these are branches that are contiguous up to
69//! the current offset. (If any code is emitted after a branch, that branch or
70//! run of contiguous branches is no longer "latest".) The latest branches are
71//! those that we can edit by simply truncating the buffer and doing something
72//! else instead.
73//!
74//! To optimize branches, we implement several simple rules, and try to apply
75//! them to the "latest branches" when possible:
76//!
77//! - A branch with a label target, when that label is bound to the ending
78//!   offset of the branch (the fallthrough location), can be removed altogether,
79//!   because the branch would have no effect).
80//!
81//! - An unconditional branch that starts at a label location, and branches to
82//!   another label, results in a "label alias": all references to the label bound
83//!   *to* this branch instruction are instead resolved to the *target* of the
84//!   branch instruction. This effectively removes empty blocks that just
85//!   unconditionally branch to the next block. We call this "branch threading".
86//!
87//! - A conditional followed by an unconditional, when the conditional branches
88//!   to the unconditional's fallthrough, results in (i) the truncation of the
89//!   unconditional, (ii) the inversion of the condition's condition, and (iii)
90//!   replacement of the conditional's target (using the original target of the
91//!   unconditional). This is a fancy way of saying "we can flip a two-target
92//!   conditional branch's taken/not-taken targets if it works better with our
93//!   fallthrough". To make this work, the emitter actually gives the buffer
94//!   *both* forms of every conditional branch: the true form is emitted into the
95//!   buffer, and the "inverted" machine-code bytes are provided as part of the
96//!   branch-fixup metadata.
97//!
98//! - An unconditional B preceded by another unconditional P, when B's label(s) have
99//!   been redirected to target(B), can be removed entirely. This is an extension
100//!   of the branch-threading optimization, and is valid because if we know there
101//!   will be no fallthrough into this branch instruction (the prior instruction
102//!   is an unconditional jump), and if we know we have successfully redirected
103//!   all labels, then this branch instruction is unreachable. Note that this
104//!   works because the redirection happens before the label is ever resolved
105//!   (fixups happen at island emission time, at which point latest-branches are
106//!   cleared, or at the end of emission), so we are sure to catch and redirect
107//!   all possible paths to this instruction.
108//!
109//! # Branch-optimization Correctness
110//!
111//! The branch-optimization mechanism depends on a few data structures with
112//! invariants, which are always held outside the scope of top-level public
113//! methods:
114//!
115//! - The latest-branches list. Each entry describes a span of the buffer
116//!   (start/end offsets), the label target, the corresponding fixup-list entry
117//!   index, and the bytes (must be the same length) for the inverted form, if
118//!   conditional. The list of labels that are bound to the start-offset of this
119//!   branch is *complete* (if any label has a resolved offset equal to `start`
120//!   and is not an alias, it must appear in this list) and *precise* (no label
121//!   in this list can be bound to another offset). No label in this list should
122//!   be an alias.  No two branch ranges can overlap, and branches are in
123//!   ascending-offset order.
124//!
125//! - The labels-at-tail list. This contains all MachLabels that have been bound
126//!   to (whose resolved offsets are equal to) the tail offset of the buffer.
127//!   No label in this list should be an alias.
128//!
129//! - The label_offsets array, containing the bound offset of a label or
130//!   UNKNOWN. No label can be bound at an offset greater than the current
131//!   buffer tail.
132//!
133//! - The label_aliases array, containing another label to which a label is
134//!   bound or UNKNOWN. A label's resolved offset is the resolved offset
135//!   of the label it is aliased to, if this is set.
136//!
137//! We argue below, at each method, how the invariants in these data structures
138//! are maintained (grep for "Post-invariant").
139//!
140//! Given these invariants, we argue why each optimization preserves execution
141//! semantics below (grep for "Preserves execution semantics").
142//!
143//! # Avoiding Quadratic Behavior
144//!
145//! There are two cases where we've had to take some care to avoid
146//! quadratic worst-case behavior:
147//!
148//! - The "labels at this branch" list can grow unboundedly if the
149//!   code generator binds many labels at one location. If the count
150//!   gets too high (defined by the `LABEL_LIST_THRESHOLD` constant), we
151//!   simply abort an optimization early in a way that is always correct
152//!   but is conservative.
153//!
154//! - The fixup list can interact with island emission to create
155//!   "quadratic island behvior". In a little more detail, one can hit
156//!   this behavior by having some pending fixups (forward label
157//!   references) with long-range label-use kinds, and some others
158//!   with shorter-range references that nonetheless still are pending
159//!   long enough to trigger island generation. In such a case, we
160//!   process the fixup list, generate veneers to extend some forward
161//!   references' ranges, but leave the other (longer-range) ones
162//!   alone. The way this was implemented put them back on a list and
163//!   resulted in quadratic behavior.
164//!
165//!   To avoid this fixups are split into two lists: one "pending" list and one
166//!   final list. The pending list is kept around for handling fixups related to
167//!   branches so it can be edited/truncated. When an island is reached, which
168//!   starts processing fixups, all pending fixups are flushed into the final
169//!   list. The final list is a `BinaryHeap` which enables fixup processing to
170//!   only process those which are required during island emission, deferring
171//!   all longer-range fixups to later.
172
173use crate::binemit::{Addend, CodeOffset, Reloc};
174use crate::ir::function::FunctionParameters;
175use crate::ir::{ExternalName, RelSourceLoc, SourceLoc, TrapCode};
176use crate::isa::unwind::UnwindInst;
177use crate::machinst::{
178    BlockIndex, MachInstLabelUse, TextSectionBuilder, VCodeConstant, VCodeConstants, VCodeInst,
179};
180use crate::trace;
181use crate::{ir, MachInstEmitState};
182use crate::{timing, VCodeConstantData};
183use cranelift_control::ControlPlane;
184use cranelift_entity::{entity_impl, PrimaryMap};
185use smallvec::SmallVec;
186use std::cmp::Ordering;
187use std::collections::BinaryHeap;
188use std::mem;
189use std::string::String;
190use std::vec::Vec;
191
192#[cfg(feature = "enable-serde")]
193use serde::{Deserialize, Serialize};
194
195#[cfg(feature = "enable-serde")]
196pub trait CompilePhase {
197    type MachSrcLocType: for<'a> Deserialize<'a> + Serialize + core::fmt::Debug + PartialEq + Clone;
198    type SourceLocType: for<'a> Deserialize<'a> + Serialize + core::fmt::Debug + PartialEq + Clone;
199}
200
201#[cfg(not(feature = "enable-serde"))]
202pub trait CompilePhase {
203    type MachSrcLocType: core::fmt::Debug + PartialEq + Clone;
204    type SourceLocType: core::fmt::Debug + PartialEq + Clone;
205}
206
207/// Status of a compiled artifact that needs patching before being used.
208#[derive(Clone, Debug, PartialEq)]
209#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
210pub struct Stencil;
211
212/// Status of a compiled artifact ready to use.
213#[derive(Clone, Debug, PartialEq)]
214pub struct Final;
215
216impl CompilePhase for Stencil {
217    type MachSrcLocType = MachSrcLoc<Stencil>;
218    type SourceLocType = RelSourceLoc;
219}
220
221impl CompilePhase for Final {
222    type MachSrcLocType = MachSrcLoc<Final>;
223    type SourceLocType = SourceLoc;
224}
225
226#[derive(Clone, Copy, Debug, PartialEq, Eq)]
227enum ForceVeneers {
228    Yes,
229    No,
230}
231
232/// A buffer of output to be produced, fixed up, and then emitted to a CodeSink
233/// in bulk.
234///
235/// This struct uses `SmallVec`s to support small-ish function bodies without
236/// any heap allocation. As such, it will be several kilobytes large. This is
237/// likely fine as long as it is stack-allocated for function emission then
238/// thrown away; but beware if many buffer objects are retained persistently.
239pub struct MachBuffer<I: VCodeInst> {
240    /// The buffer contents, as raw bytes.
241    data: SmallVec<[u8; 1024]>,
242    /// Any relocations referring to this code. Note that only *external*
243    /// relocations are tracked here; references to labels within the buffer are
244    /// resolved before emission.
245    relocs: SmallVec<[MachReloc; 16]>,
246    /// Any trap records referring to this code.
247    traps: SmallVec<[MachTrap; 16]>,
248    /// Any call site records referring to this code.
249    call_sites: SmallVec<[MachCallSite; 16]>,
250    /// Any source location mappings referring to this code.
251    srclocs: SmallVec<[MachSrcLoc<Stencil>; 64]>,
252    /// Any user stack maps for this code.
253    ///
254    /// Each entry is an `(offset, span, stack_map)` triple. Entries are sorted
255    /// by code offset, and each stack map covers `span` bytes on the stack.
256    user_stack_maps: SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]>,
257    /// Any unwind info at a given location.
258    unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
259    /// The current source location in progress (after `start_srcloc()` and
260    /// before `end_srcloc()`).  This is a (start_offset, src_loc) tuple.
261    cur_srcloc: Option<(CodeOffset, RelSourceLoc)>,
262    /// Known label offsets; `UNKNOWN_LABEL_OFFSET` if unknown.
263    label_offsets: SmallVec<[CodeOffset; 16]>,
264    /// Label aliases: when one label points to an unconditional jump, and that
265    /// jump points to another label, we can redirect references to the first
266    /// label immediately to the second.
267    ///
268    /// Invariant: we don't have label-alias cycles. We ensure this by,
269    /// before setting label A to alias label B, resolving B's alias
270    /// target (iteratively until a non-aliased label); if B is already
271    /// aliased to A, then we cannot alias A back to B.
272    label_aliases: SmallVec<[MachLabel; 16]>,
273    /// Constants that must be emitted at some point.
274    pending_constants: SmallVec<[VCodeConstant; 16]>,
275    /// Byte size of all constants in `pending_constants`.
276    pending_constants_size: CodeOffset,
277    /// Traps that must be emitted at some point.
278    pending_traps: SmallVec<[MachLabelTrap; 16]>,
279    /// Fixups that haven't yet been flushed into `fixup_records` below and may
280    /// be related to branches that are chomped. These all get added to
281    /// `fixup_records` during island emission.
282    pending_fixup_records: SmallVec<[MachLabelFixup<I>; 16]>,
283    /// The nearest upcoming deadline for entries in `pending_fixup_records`.
284    pending_fixup_deadline: CodeOffset,
285    /// Fixups that must be performed after all code is emitted.
286    fixup_records: BinaryHeap<MachLabelFixup<I>>,
287    /// Latest branches, to facilitate in-place editing for better fallthrough
288    /// behavior and empty-block removal.
289    latest_branches: SmallVec<[MachBranch; 4]>,
290    /// All labels at the current offset (emission tail). This is lazily
291    /// cleared: it is actually accurate as long as the current offset is
292    /// `labels_at_tail_off`, but if `cur_offset()` has grown larger, it should
293    /// be considered as empty.
294    ///
295    /// For correctness, this *must* be complete (i.e., the vector must contain
296    /// all labels whose offsets are resolved to the current tail), because we
297    /// rely on it to update labels when we truncate branches.
298    labels_at_tail: SmallVec<[MachLabel; 4]>,
299    /// The last offset at which `labels_at_tail` is valid. It is conceptually
300    /// always describing the tail of the buffer, but we do not clear
301    /// `labels_at_tail` eagerly when the tail grows, rather we lazily clear it
302    /// when the offset has grown past this (`labels_at_tail_off`) point.
303    /// Always <= `cur_offset()`.
304    labels_at_tail_off: CodeOffset,
305    /// Metadata about all constants that this function has access to.
306    ///
307    /// This records the size/alignment of all constants (not the actual data)
308    /// along with the last available label generated for the constant. This map
309    /// is consulted when constants are referred to and the label assigned to a
310    /// constant may change over time as well.
311    constants: PrimaryMap<VCodeConstant, MachBufferConstant>,
312    /// All recorded usages of constants as pairs of the constant and where the
313    /// constant needs to be placed within `self.data`. Note that the same
314    /// constant may appear in this array multiple times if it was emitted
315    /// multiple times.
316    used_constants: SmallVec<[(VCodeConstant, CodeOffset); 4]>,
317    /// Indicates when a patchable region is currently open, to guard that it's
318    /// not possible to nest patchable regions.
319    open_patchable: bool,
320}
321
322impl MachBufferFinalized<Stencil> {
323    /// Get a finalized machine buffer by applying the function's base source location.
324    pub fn apply_base_srcloc(self, base_srcloc: SourceLoc) -> MachBufferFinalized<Final> {
325        MachBufferFinalized {
326            data: self.data,
327            relocs: self.relocs,
328            traps: self.traps,
329            call_sites: self.call_sites,
330            srclocs: self
331                .srclocs
332                .into_iter()
333                .map(|srcloc| srcloc.apply_base_srcloc(base_srcloc))
334                .collect(),
335            user_stack_maps: self.user_stack_maps,
336            unwind_info: self.unwind_info,
337            alignment: self.alignment,
338        }
339    }
340}
341
342/// A `MachBuffer` once emission is completed: holds generated code and records,
343/// without fixups. This allows the type to be independent of the backend.
344#[derive(PartialEq, Debug, Clone)]
345#[cfg_attr(
346    feature = "enable-serde",
347    derive(serde_derive::Serialize, serde_derive::Deserialize)
348)]
349pub struct MachBufferFinalized<T: CompilePhase> {
350    /// The buffer contents, as raw bytes.
351    pub(crate) data: SmallVec<[u8; 1024]>,
352    /// Any relocations referring to this code. Note that only *external*
353    /// relocations are tracked here; references to labels within the buffer are
354    /// resolved before emission.
355    pub(crate) relocs: SmallVec<[FinalizedMachReloc; 16]>,
356    /// Any trap records referring to this code.
357    pub(crate) traps: SmallVec<[MachTrap; 16]>,
358    /// Any call site records referring to this code.
359    pub(crate) call_sites: SmallVec<[MachCallSite; 16]>,
360    /// Any source location mappings referring to this code.
361    pub(crate) srclocs: SmallVec<[T::MachSrcLocType; 64]>,
362    /// Any user stack maps for this code.
363    ///
364    /// Each entry is an `(offset, span, stack_map)` triple. Entries are sorted
365    /// by code offset, and each stack map covers `span` bytes on the stack.
366    pub(crate) user_stack_maps: SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]>,
367    /// Any unwind info at a given location.
368    pub unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
369    /// The required alignment of this buffer.
370    pub alignment: u32,
371}
372
373const UNKNOWN_LABEL_OFFSET: CodeOffset = 0xffff_ffff;
374const UNKNOWN_LABEL: MachLabel = MachLabel(0xffff_ffff);
375
376/// Threshold on max length of `labels_at_this_branch` list to avoid
377/// unbounded quadratic behavior (see comment below at use-site).
378const LABEL_LIST_THRESHOLD: usize = 100;
379
380/// A label refers to some offset in a `MachBuffer`. It may not be resolved at
381/// the point at which it is used by emitted code; the buffer records "fixups"
382/// for references to the label, and will come back and patch the code
383/// appropriately when the label's location is eventually known.
384#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
385pub struct MachLabel(u32);
386entity_impl!(MachLabel);
387
388impl MachLabel {
389    /// Get a label for a block. (The first N MachLabels are always reserved for
390    /// the N blocks in the vcode.)
391    pub fn from_block(bindex: BlockIndex) -> MachLabel {
392        MachLabel(bindex.index() as u32)
393    }
394
395    /// Get the numeric label index.
396    pub fn get(self) -> u32 {
397        self.0
398    }
399
400    /// Creates a string representing this label, for convenience.
401    pub fn to_string(&self) -> String {
402        format!("label{}", self.0)
403    }
404}
405
406impl Default for MachLabel {
407    fn default() -> Self {
408        UNKNOWN_LABEL
409    }
410}
411
412/// Represents the beginning of an editable region in the [`MachBuffer`], while code emission is
413/// still occurring. An [`OpenPatchRegion`] is closed by [`MachBuffer::end_patchable`], consuming
414/// the [`OpenPatchRegion`] token in the process.
415pub struct OpenPatchRegion(usize);
416
417/// A region in the [`MachBuffer`] code buffer that can be edited prior to finalization. An example
418/// of where you might want to use this is for patching instructions that mention constants that
419/// won't be known until later: [`MachBuffer::start_patchable`] can be used to begin the patchable
420/// region, instructions can be emitted with placeholder constants, and the [`PatchRegion`] token
421/// can be produced by [`MachBuffer::end_patchable`]. Once the values of those constants are known,
422/// the [`PatchRegion::patch`] function can be used to get a mutable buffer to the instruction
423/// bytes, and the constants uses can be updated directly.
424pub struct PatchRegion {
425    range: std::ops::Range<usize>,
426}
427
428impl PatchRegion {
429    /// Consume the patch region to yield a mutable slice of the [`MachBuffer`] data buffer.
430    pub fn patch<I: VCodeInst>(self, buffer: &mut MachBuffer<I>) -> &mut [u8] {
431        &mut buffer.data[self.range]
432    }
433}
434
435impl<I: VCodeInst> MachBuffer<I> {
436    /// Create a new section, known to start at `start_offset` and with a size limited to
437    /// `length_limit`.
438    pub fn new() -> MachBuffer<I> {
439        MachBuffer {
440            data: SmallVec::new(),
441            relocs: SmallVec::new(),
442            traps: SmallVec::new(),
443            call_sites: SmallVec::new(),
444            srclocs: SmallVec::new(),
445            user_stack_maps: SmallVec::new(),
446            unwind_info: SmallVec::new(),
447            cur_srcloc: None,
448            label_offsets: SmallVec::new(),
449            label_aliases: SmallVec::new(),
450            pending_constants: SmallVec::new(),
451            pending_constants_size: 0,
452            pending_traps: SmallVec::new(),
453            pending_fixup_records: SmallVec::new(),
454            pending_fixup_deadline: u32::MAX,
455            fixup_records: Default::default(),
456            latest_branches: SmallVec::new(),
457            labels_at_tail: SmallVec::new(),
458            labels_at_tail_off: 0,
459            constants: Default::default(),
460            used_constants: Default::default(),
461            open_patchable: false,
462        }
463    }
464
465    /// Current offset from start of buffer.
466    pub fn cur_offset(&self) -> CodeOffset {
467        self.data.len() as CodeOffset
468    }
469
470    /// Add a byte.
471    pub fn put1(&mut self, value: u8) {
472        self.data.push(value);
473
474        // Post-invariant: conceptual-labels_at_tail contains a complete and
475        // precise list of labels bound at `cur_offset()`. We have advanced
476        // `cur_offset()`, hence if it had been equal to `labels_at_tail_off`
477        // before, it is not anymore (and it cannot become equal, because
478        // `labels_at_tail_off` is always <= `cur_offset()`). Thus the list is
479        // conceptually empty (even though it is only lazily cleared). No labels
480        // can be bound at this new offset (by invariant on `label_offsets`).
481        // Hence the invariant holds.
482    }
483
484    /// Add 2 bytes.
485    pub fn put2(&mut self, value: u16) {
486        let bytes = value.to_le_bytes();
487        self.data.extend_from_slice(&bytes[..]);
488
489        // Post-invariant: as for `put1()`.
490    }
491
492    /// Add 4 bytes.
493    pub fn put4(&mut self, value: u32) {
494        let bytes = value.to_le_bytes();
495        self.data.extend_from_slice(&bytes[..]);
496
497        // Post-invariant: as for `put1()`.
498    }
499
500    /// Add 8 bytes.
501    pub fn put8(&mut self, value: u64) {
502        let bytes = value.to_le_bytes();
503        self.data.extend_from_slice(&bytes[..]);
504
505        // Post-invariant: as for `put1()`.
506    }
507
508    /// Add a slice of bytes.
509    pub fn put_data(&mut self, data: &[u8]) {
510        self.data.extend_from_slice(data);
511
512        // Post-invariant: as for `put1()`.
513    }
514
515    /// Reserve appended space and return a mutable slice referring to it.
516    pub fn get_appended_space(&mut self, len: usize) -> &mut [u8] {
517        let off = self.data.len();
518        let new_len = self.data.len() + len;
519        self.data.resize(new_len, 0);
520        &mut self.data[off..]
521
522        // Post-invariant: as for `put1()`.
523    }
524
525    /// Align up to the given alignment.
526    pub fn align_to(&mut self, align_to: CodeOffset) {
527        trace!("MachBuffer: align to {}", align_to);
528        assert!(
529            align_to.is_power_of_two(),
530            "{align_to} is not a power of two"
531        );
532        while self.cur_offset() & (align_to - 1) != 0 {
533            self.put1(0);
534        }
535
536        // Post-invariant: as for `put1()`.
537    }
538
539    /// Begin a region of patchable code. There is one requirement for the
540    /// code that is emitted: It must not introduce any instructions that
541    /// could be chomped (branches are an example of this). In other words,
542    /// you must not call [`MachBuffer::add_cond_branch`] or
543    /// [`MachBuffer::add_uncond_branch`] between calls to this method and
544    /// [`MachBuffer::end_patchable`].
545    pub fn start_patchable(&mut self) -> OpenPatchRegion {
546        assert!(!self.open_patchable, "Patchable regions may not be nested");
547        self.open_patchable = true;
548        OpenPatchRegion(usize::try_from(self.cur_offset()).unwrap())
549    }
550
551    /// End a region of patchable code, yielding a [`PatchRegion`] value that
552    /// can be consumed later to produce a one-off mutable slice to the
553    /// associated region of the data buffer.
554    pub fn end_patchable(&mut self, open: OpenPatchRegion) -> PatchRegion {
555        // No need to assert the state of `open_patchable` here, as we take
556        // ownership of the only `OpenPatchable` value.
557        self.open_patchable = false;
558        let end = usize::try_from(self.cur_offset()).unwrap();
559        PatchRegion { range: open.0..end }
560    }
561
562    /// Allocate a `Label` to refer to some offset. May not be bound to a fixed
563    /// offset yet.
564    pub fn get_label(&mut self) -> MachLabel {
565        let l = self.label_offsets.len() as u32;
566        self.label_offsets.push(UNKNOWN_LABEL_OFFSET);
567        self.label_aliases.push(UNKNOWN_LABEL);
568        trace!("MachBuffer: new label -> {:?}", MachLabel(l));
569        MachLabel(l)
570
571        // Post-invariant: the only mutation is to add a new label; it has no
572        // bound offset yet, so it trivially satisfies all invariants.
573    }
574
575    /// Reserve the first N MachLabels for blocks.
576    pub fn reserve_labels_for_blocks(&mut self, blocks: usize) {
577        trace!("MachBuffer: first {} labels are for blocks", blocks);
578        debug_assert!(self.label_offsets.is_empty());
579        self.label_offsets.resize(blocks, UNKNOWN_LABEL_OFFSET);
580        self.label_aliases.resize(blocks, UNKNOWN_LABEL);
581
582        // Post-invariant: as for `get_label()`.
583    }
584
585    /// Registers metadata in this `MachBuffer` about the `constants` provided.
586    ///
587    /// This will record the size/alignment of all constants which will prepare
588    /// them for emission later on.
589    pub fn register_constants(&mut self, constants: &VCodeConstants) {
590        for (c, val) in constants.iter() {
591            self.register_constant(&c, val);
592        }
593    }
594
595    /// Similar to [`MachBuffer::register_constants`] but registers a
596    /// single constant metadata. This function is useful in
597    /// situations where not all constants are known at the time of
598    /// emission.
599    pub fn register_constant(&mut self, constant: &VCodeConstant, data: &VCodeConstantData) {
600        let c2 = self.constants.push(MachBufferConstant {
601            upcoming_label: None,
602            align: data.alignment(),
603            size: data.as_slice().len(),
604        });
605        assert_eq!(*constant, c2);
606    }
607
608    /// Completes constant emission by iterating over `self.used_constants` and
609    /// filling in the "holes" with the constant values provided by `constants`.
610    ///
611    /// Returns the alignment required for this entire buffer. Alignment starts
612    /// at the ISA's minimum function alignment and can be increased due to
613    /// constant requirements.
614    fn finish_constants(&mut self, constants: &VCodeConstants) -> u32 {
615        let mut alignment = I::function_alignment().minimum;
616        for (constant, offset) in mem::take(&mut self.used_constants) {
617            let constant = constants.get(constant);
618            let data = constant.as_slice();
619            self.data[offset as usize..][..data.len()].copy_from_slice(data);
620            alignment = constant.alignment().max(alignment);
621        }
622        alignment
623    }
624
625    /// Returns a label that can be used to refer to the `constant` provided.
626    ///
627    /// This will automatically defer a new constant to be emitted for
628    /// `constant` if it has not been previously emitted. Note that this
629    /// function may return a different label for the same constant at
630    /// different points in time. The label is valid to use only from the
631    /// current location; the MachBuffer takes care to emit the same constant
632    /// multiple times if needed so the constant is always in range.
633    pub fn get_label_for_constant(&mut self, constant: VCodeConstant) -> MachLabel {
634        let MachBufferConstant {
635            align,
636            size,
637            upcoming_label,
638        } = self.constants[constant];
639        if let Some(label) = upcoming_label {
640            return label;
641        }
642
643        let label = self.get_label();
644        trace!(
645            "defer constant: eventually emit {size} bytes aligned \
646             to {align} at label {label:?}",
647        );
648        self.pending_constants.push(constant);
649        self.pending_constants_size += size as u32;
650        self.constants[constant].upcoming_label = Some(label);
651        label
652    }
653
654    /// Bind a label to the current offset. A label can only be bound once.
655    pub fn bind_label(&mut self, label: MachLabel, ctrl_plane: &mut ControlPlane) {
656        trace!(
657            "MachBuffer: bind label {:?} at offset {}",
658            label,
659            self.cur_offset()
660        );
661        debug_assert_eq!(self.label_offsets[label.0 as usize], UNKNOWN_LABEL_OFFSET);
662        debug_assert_eq!(self.label_aliases[label.0 as usize], UNKNOWN_LABEL);
663        let offset = self.cur_offset();
664        self.label_offsets[label.0 as usize] = offset;
665        self.lazily_clear_labels_at_tail();
666        self.labels_at_tail.push(label);
667
668        // Invariants hold: bound offset of label is <= cur_offset (in fact it
669        // is equal). If the `labels_at_tail` list was complete and precise
670        // before, it is still, because we have bound this label to the current
671        // offset and added it to the list (which contains all labels at the
672        // current offset).
673
674        self.optimize_branches(ctrl_plane);
675
676        // Post-invariant: by `optimize_branches()` (see argument there).
677    }
678
679    /// Lazily clear `labels_at_tail` if the tail offset has moved beyond the
680    /// offset that it applies to.
681    fn lazily_clear_labels_at_tail(&mut self) {
682        let offset = self.cur_offset();
683        if offset > self.labels_at_tail_off {
684            self.labels_at_tail_off = offset;
685            self.labels_at_tail.clear();
686        }
687
688        // Post-invariant: either labels_at_tail_off was at cur_offset, and
689        // state is untouched, or was less than cur_offset, in which case the
690        // labels_at_tail list was conceptually empty, and is now actually
691        // empty.
692    }
693
694    /// Resolve a label to an offset, if known. May return `UNKNOWN_LABEL_OFFSET`.
695    pub(crate) fn resolve_label_offset(&self, mut label: MachLabel) -> CodeOffset {
696        let mut iters = 0;
697        while self.label_aliases[label.0 as usize] != UNKNOWN_LABEL {
698            label = self.label_aliases[label.0 as usize];
699            // To protect against an infinite loop (despite our assurances to
700            // ourselves that the invariants make this impossible), assert out
701            // after 1M iterations. The number of basic blocks is limited
702            // in most contexts anyway so this should be impossible to hit with
703            // a legitimate input.
704            iters += 1;
705            assert!(iters < 1_000_000, "Unexpected cycle in label aliases");
706        }
707        self.label_offsets[label.0 as usize]
708
709        // Post-invariant: no mutations.
710    }
711
712    /// Emit a reference to the given label with the given reference type (i.e.,
713    /// branch-instruction format) at the current offset.  This is like a
714    /// relocation, but handled internally.
715    ///
716    /// This can be called before the branch is actually emitted; fixups will
717    /// not happen until an island is emitted or the buffer is finished.
718    pub fn use_label_at_offset(&mut self, offset: CodeOffset, label: MachLabel, kind: I::LabelUse) {
719        trace!(
720            "MachBuffer: use_label_at_offset: offset {} label {:?} kind {:?}",
721            offset,
722            label,
723            kind
724        );
725
726        // Add the fixup, and update the worst-case island size based on a
727        // veneer for this label use.
728        let fixup = MachLabelFixup {
729            label,
730            offset,
731            kind,
732        };
733        self.pending_fixup_deadline = self.pending_fixup_deadline.min(fixup.deadline());
734        self.pending_fixup_records.push(fixup);
735
736        // Post-invariant: no mutations to branches/labels data structures.
737    }
738
739    /// Inform the buffer of an unconditional branch at the given offset,
740    /// targeting the given label. May be used to optimize branches.
741    /// The last added label-use must correspond to this branch.
742    /// This must be called when the current offset is equal to `start`; i.e.,
743    /// before actually emitting the branch. This implies that for a branch that
744    /// uses a label and is eligible for optimizations by the MachBuffer, the
745    /// proper sequence is:
746    ///
747    /// - Call `use_label_at_offset()` to emit the fixup record.
748    /// - Call `add_uncond_branch()` to make note of the branch.
749    /// - Emit the bytes for the branch's machine code.
750    ///
751    /// Additional requirement: no labels may be bound between `start` and `end`
752    /// (exclusive on both ends).
753    pub fn add_uncond_branch(&mut self, start: CodeOffset, end: CodeOffset, target: MachLabel) {
754        debug_assert!(
755            !self.open_patchable,
756            "Branch instruction inserted within a patchable region"
757        );
758        assert!(self.cur_offset() == start);
759        debug_assert!(end > start);
760        assert!(!self.pending_fixup_records.is_empty());
761        let fixup = self.pending_fixup_records.len() - 1;
762        self.lazily_clear_labels_at_tail();
763        self.latest_branches.push(MachBranch {
764            start,
765            end,
766            target,
767            fixup,
768            inverted: None,
769            labels_at_this_branch: self.labels_at_tail.clone(),
770        });
771
772        // Post-invariant: we asserted branch start is current tail; the list of
773        // labels at branch is cloned from list of labels at current tail.
774    }
775
776    /// Inform the buffer of a conditional branch at the given offset,
777    /// targeting the given label. May be used to optimize branches.
778    /// The last added label-use must correspond to this branch.
779    ///
780    /// Additional requirement: no labels may be bound between `start` and `end`
781    /// (exclusive on both ends).
782    pub fn add_cond_branch(
783        &mut self,
784        start: CodeOffset,
785        end: CodeOffset,
786        target: MachLabel,
787        inverted: &[u8],
788    ) {
789        debug_assert!(
790            !self.open_patchable,
791            "Branch instruction inserted within a patchable region"
792        );
793        assert!(self.cur_offset() == start);
794        debug_assert!(end > start);
795        assert!(!self.pending_fixup_records.is_empty());
796        debug_assert!(
797            inverted.len() == (end - start) as usize,
798            "branch length = {}, but inverted length = {}",
799            end - start,
800            inverted.len()
801        );
802        let fixup = self.pending_fixup_records.len() - 1;
803        let inverted = Some(SmallVec::from(inverted));
804        self.lazily_clear_labels_at_tail();
805        self.latest_branches.push(MachBranch {
806            start,
807            end,
808            target,
809            fixup,
810            inverted,
811            labels_at_this_branch: self.labels_at_tail.clone(),
812        });
813
814        // Post-invariant: we asserted branch start is current tail; labels at
815        // branch list is cloned from list of labels at current tail.
816    }
817
818    fn truncate_last_branch(&mut self) {
819        debug_assert!(
820            !self.open_patchable,
821            "Branch instruction truncated within a patchable region"
822        );
823
824        self.lazily_clear_labels_at_tail();
825        // Invariants hold at this point.
826
827        let b = self.latest_branches.pop().unwrap();
828        assert!(b.end == self.cur_offset());
829
830        // State:
831        //    [PRE CODE]
832        //  Offset b.start, b.labels_at_this_branch:
833        //    [BRANCH CODE]
834        //  cur_off, self.labels_at_tail -->
835        //    (end of buffer)
836        self.data.truncate(b.start as usize);
837        self.pending_fixup_records.truncate(b.fixup);
838        while let Some(last_srcloc) = self.srclocs.last_mut() {
839            if last_srcloc.end <= b.start {
840                break;
841            }
842            if last_srcloc.start < b.start {
843                last_srcloc.end = b.start;
844                break;
845            }
846            self.srclocs.pop();
847        }
848        // State:
849        //    [PRE CODE]
850        //  cur_off, Offset b.start, b.labels_at_this_branch:
851        //    (end of buffer)
852        //
853        //  self.labels_at_tail -->  (past end of buffer)
854        let cur_off = self.cur_offset();
855        self.labels_at_tail_off = cur_off;
856        // State:
857        //    [PRE CODE]
858        //  cur_off, Offset b.start, b.labels_at_this_branch,
859        //  self.labels_at_tail:
860        //    (end of buffer)
861        //
862        // resolve_label_offset(l) for l in labels_at_tail:
863        //    (past end of buffer)
864
865        trace!(
866            "truncate_last_branch: truncated {:?}; off now {}",
867            b,
868            cur_off
869        );
870
871        // Fix up resolved label offsets for labels at tail.
872        for &l in &self.labels_at_tail {
873            self.label_offsets[l.0 as usize] = cur_off;
874        }
875        // Old labels_at_this_branch are now at cur_off.
876        self.labels_at_tail
877            .extend(b.labels_at_this_branch.into_iter());
878
879        // Post-invariant: this operation is defined to truncate the buffer,
880        // which moves cur_off backward, and to move labels at the end of the
881        // buffer back to the start-of-branch offset.
882        //
883        // latest_branches satisfies all invariants:
884        // - it has no branches past the end of the buffer (branches are in
885        //   order, we removed the last one, and we truncated the buffer to just
886        //   before the start of that branch)
887        // - no labels were moved to lower offsets than the (new) cur_off, so
888        //   the labels_at_this_branch list for any other branch need not change.
889        //
890        // labels_at_tail satisfies all invariants:
891        // - all labels that were at the tail after the truncated branch are
892        //   moved backward to just before the branch, which becomes the new tail;
893        //   thus every element in the list should remain (ensured by `.extend()`
894        //   above).
895        // - all labels that refer to the new tail, which is the start-offset of
896        //   the truncated branch, must be present. The `labels_at_this_branch`
897        //   list in the truncated branch's record is a complete and precise list
898        //   of exactly these labels; we append these to labels_at_tail.
899        // - labels_at_tail_off is at cur_off after truncation occurs, so the
900        //   list is valid (not to be lazily cleared).
901        //
902        // The stated operation was performed:
903        // - For each label at the end of the buffer prior to this method, it
904        //   now resolves to the new (truncated) end of the buffer: it must have
905        //   been in `labels_at_tail` (this list is precise and complete, and
906        //   the tail was at the end of the truncated branch on entry), and we
907        //   iterate over this list and set `label_offsets` to the new tail.
908        //   None of these labels could have been an alias (by invariant), so
909        //   `label_offsets` is authoritative for each.
910        // - No other labels will be past the end of the buffer, because of the
911        //   requirement that no labels be bound to the middle of branch ranges
912        //   (see comments to `add_{cond,uncond}_branch()`).
913        // - The buffer is truncated to just before the last branch, and the
914        //   fixup record referring to that last branch is removed.
915    }
916
917    /// Performs various optimizations on branches pointing at the current label.
918    pub fn optimize_branches(&mut self, ctrl_plane: &mut ControlPlane) {
919        if ctrl_plane.get_decision() {
920            return;
921        }
922
923        self.lazily_clear_labels_at_tail();
924        // Invariants valid at this point.
925
926        trace!(
927            "enter optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
928            self.latest_branches,
929            self.labels_at_tail,
930            self.pending_fixup_records
931        );
932
933        // We continue to munch on branches at the tail of the buffer until no
934        // more rules apply. Note that the loop only continues if a branch is
935        // actually truncated (or if labels are redirected away from a branch),
936        // so this always makes progress.
937        while let Some(b) = self.latest_branches.last() {
938            let cur_off = self.cur_offset();
939            trace!("optimize_branches: last branch {:?} at off {}", b, cur_off);
940            // If there has been any code emission since the end of the last branch or
941            // label definition, then there's nothing we can edit (because we
942            // don't move code once placed, only back up and overwrite), so
943            // clear the records and finish.
944            if b.end < cur_off {
945                break;
946            }
947
948            // If the "labels at this branch" list on this branch is
949            // longer than a threshold, don't do any simplification,
950            // and let the branch remain to separate those labels from
951            // the current tail. This avoids quadratic behavior (see
952            // #3468): otherwise, if a long string of "goto next;
953            // next:" patterns are emitted, all of the labels will
954            // coalesce into a long list of aliases for the current
955            // buffer tail. We must track all aliases of the current
956            // tail for correctness, but we are also allowed to skip
957            // optimization (removal) of any branch, so we take the
958            // escape hatch here and let it stand. In effect this
959            // "spreads" the many thousands of labels in the
960            // pathological case among an actual (harmless but
961            // suboptimal) instruction once per N labels.
962            if b.labels_at_this_branch.len() > LABEL_LIST_THRESHOLD {
963                break;
964            }
965
966            // Invariant: we are looking at a branch that ends at the tail of
967            // the buffer.
968
969            // For any branch, conditional or unconditional:
970            // - If the target is a label at the current offset, then remove
971            //   the conditional branch, and reset all labels that targeted
972            //   the current offset (end of branch) to the truncated
973            //   end-of-code.
974            //
975            // Preserves execution semantics: a branch to its own fallthrough
976            // address is equivalent to a no-op; in both cases, nextPC is the
977            // fallthrough.
978            if self.resolve_label_offset(b.target) == cur_off {
979                trace!("branch with target == cur off; truncating");
980                self.truncate_last_branch();
981                continue;
982            }
983
984            // If latest is an unconditional branch:
985            //
986            // - If the branch's target is not its own start address, then for
987            //   each label at the start of branch, make the label an alias of the
988            //   branch target, and remove the label from the "labels at this
989            //   branch" list.
990            //
991            //   - Preserves execution semantics: an unconditional branch's
992            //     only effect is to set PC to a new PC; this change simply
993            //     collapses one step in the step-semantics.
994            //
995            //   - Post-invariant: the labels that were bound to the start of
996            //     this branch become aliases, so they must not be present in any
997            //     labels-at-this-branch list or the labels-at-tail list. The
998            //     labels are removed form the latest-branch record's
999            //     labels-at-this-branch list, and are never placed in the
1000            //     labels-at-tail list. Furthermore, it is correct that they are
1001            //     not in either list, because they are now aliases, and labels
1002            //     that are aliases remain aliases forever.
1003            //
1004            // - If there is a prior unconditional branch that ends just before
1005            //   this one begins, and this branch has no labels bound to its
1006            //   start, then we can truncate this branch, because it is entirely
1007            //   unreachable (we have redirected all labels that make it
1008            //   reachable otherwise). Do so and continue around the loop.
1009            //
1010            //   - Preserves execution semantics: the branch is unreachable,
1011            //     because execution can only flow into an instruction from the
1012            //     prior instruction's fallthrough or from a branch bound to that
1013            //     instruction's start offset. Unconditional branches have no
1014            //     fallthrough, so if the prior instruction is an unconditional
1015            //     branch, no fallthrough entry can happen. The
1016            //     labels-at-this-branch list is complete (by invariant), so if it
1017            //     is empty, then the instruction is entirely unreachable. Thus,
1018            //     it can be removed.
1019            //
1020            //   - Post-invariant: ensured by truncate_last_branch().
1021            //
1022            // - If there is a prior conditional branch whose target label
1023            //   resolves to the current offset (branches around the
1024            //   unconditional branch), then remove the unconditional branch,
1025            //   and make the target of the unconditional the target of the
1026            //   conditional instead.
1027            //
1028            //   - Preserves execution semantics: previously we had:
1029            //
1030            //         L1:
1031            //            cond_br L2
1032            //            br L3
1033            //         L2:
1034            //            (end of buffer)
1035            //
1036            //     by removing the last branch, we have:
1037            //
1038            //         L1:
1039            //            cond_br L2
1040            //         L2:
1041            //            (end of buffer)
1042            //
1043            //     we then fix up the records for the conditional branch to
1044            //     have:
1045            //
1046            //         L1:
1047            //           cond_br.inverted L3
1048            //         L2:
1049            //
1050            //     In the original code, control flow reaches L2 when the
1051            //     conditional branch's predicate is true, and L3 otherwise. In
1052            //     the optimized code, the same is true.
1053            //
1054            //   - Post-invariant: all edits to latest_branches and
1055            //     labels_at_tail are performed by `truncate_last_branch()`,
1056            //     which maintains the invariants at each step.
1057
1058            if b.is_uncond() {
1059                // Set any label equal to current branch's start as an alias of
1060                // the branch's target, if the target is not the branch itself
1061                // (i.e., an infinite loop).
1062                //
1063                // We cannot perform this aliasing if the target of this branch
1064                // ultimately aliases back here; if so, we need to keep this
1065                // branch, so break out of this loop entirely (and clear the
1066                // latest-branches list below).
1067                //
1068                // Note that this check is what prevents cycles from forming in
1069                // `self.label_aliases`. To see why, consider an arbitrary start
1070                // state:
1071                //
1072                // label_aliases[L1] = L2, label_aliases[L2] = L3, ..., up to
1073                // Ln, which is not aliased.
1074                //
1075                // We would create a cycle if we assigned label_aliases[Ln]
1076                // = L1.  Note that the below assignment is the only write
1077                // to label_aliases.
1078                //
1079                // By our other invariants, we have that Ln (`l` below)
1080                // resolves to the offset `b.start`, because it is in the
1081                // set `b.labels_at_this_branch`.
1082                //
1083                // If L1 were already aliased, through some arbitrarily deep
1084                // chain, to Ln, then it must also resolve to this offset
1085                // `b.start`.
1086                //
1087                // By checking the resolution of `L1` against this offset,
1088                // and aborting this branch-simplification if they are
1089                // equal, we prevent the below assignment from ever creating
1090                // a cycle.
1091                if self.resolve_label_offset(b.target) != b.start {
1092                    let redirected = b.labels_at_this_branch.len();
1093                    for &l in &b.labels_at_this_branch {
1094                        trace!(
1095                            " -> label at start of branch {:?} redirected to target {:?}",
1096                            l,
1097                            b.target
1098                        );
1099                        self.label_aliases[l.0 as usize] = b.target;
1100                        // NOTE: we continue to ensure the invariant that labels
1101                        // pointing to tail of buffer are in `labels_at_tail`
1102                        // because we already ensured above that the last branch
1103                        // cannot have a target of `cur_off`; so we never have
1104                        // to put the label into `labels_at_tail` when moving it
1105                        // here.
1106                    }
1107                    // Maintain invariant: all branches have been redirected
1108                    // and are no longer pointing at the start of this branch.
1109                    let mut_b = self.latest_branches.last_mut().unwrap();
1110                    mut_b.labels_at_this_branch.clear();
1111
1112                    if redirected > 0 {
1113                        trace!(" -> after label redirects, restarting loop");
1114                        continue;
1115                    }
1116                } else {
1117                    break;
1118                }
1119
1120                let b = self.latest_branches.last().unwrap();
1121
1122                // Examine any immediately preceding branch.
1123                if self.latest_branches.len() > 1 {
1124                    let prev_b = &self.latest_branches[self.latest_branches.len() - 2];
1125                    trace!(" -> more than one branch; prev_b = {:?}", prev_b);
1126                    // This uncond is immediately after another uncond; we
1127                    // should have already redirected labels to this uncond away
1128                    // (but check to be sure); so we can truncate this uncond.
1129                    if prev_b.is_uncond()
1130                        && prev_b.end == b.start
1131                        && b.labels_at_this_branch.is_empty()
1132                    {
1133                        trace!(" -> uncond follows another uncond; truncating");
1134                        self.truncate_last_branch();
1135                        continue;
1136                    }
1137
1138                    // This uncond is immediately after a conditional, and the
1139                    // conditional's target is the end of this uncond, and we've
1140                    // already redirected labels to this uncond away; so we can
1141                    // truncate this uncond, flip the sense of the conditional, and
1142                    // set the conditional's target (in `latest_branches` and in
1143                    // `fixup_records`) to the uncond's target.
1144                    if prev_b.is_cond()
1145                        && prev_b.end == b.start
1146                        && self.resolve_label_offset(prev_b.target) == cur_off
1147                    {
1148                        trace!(" -> uncond follows a conditional, and conditional's target resolves to current offset");
1149                        // Save the target of the uncond (this becomes the
1150                        // target of the cond), and truncate the uncond.
1151                        let target = b.target;
1152                        let data = prev_b.inverted.clone().unwrap();
1153                        self.truncate_last_branch();
1154
1155                        // Mutate the code and cond branch.
1156                        let off_before_edit = self.cur_offset();
1157                        let prev_b = self.latest_branches.last_mut().unwrap();
1158                        let not_inverted = SmallVec::from(
1159                            &self.data[(prev_b.start as usize)..(prev_b.end as usize)],
1160                        );
1161
1162                        // Low-level edit: replaces bytes of branch with
1163                        // inverted form. cur_off remains the same afterward, so
1164                        // we do not need to modify label data structures.
1165                        self.data.truncate(prev_b.start as usize);
1166                        self.data.extend_from_slice(&data[..]);
1167
1168                        // Save the original code as the inversion of the
1169                        // inverted branch, in case we later edit this branch
1170                        // again.
1171                        prev_b.inverted = Some(not_inverted);
1172                        self.pending_fixup_records[prev_b.fixup].label = target;
1173                        trace!(" -> reassigning target of condbr to {:?}", target);
1174                        prev_b.target = target;
1175                        debug_assert_eq!(off_before_edit, self.cur_offset());
1176                        continue;
1177                    }
1178                }
1179            }
1180
1181            // If we couldn't do anything with the last branch, then break.
1182            break;
1183        }
1184
1185        self.purge_latest_branches();
1186
1187        trace!(
1188            "leave optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
1189            self.latest_branches,
1190            self.labels_at_tail,
1191            self.pending_fixup_records
1192        );
1193    }
1194
1195    fn purge_latest_branches(&mut self) {
1196        // All of our branch simplification rules work only if a branch ends at
1197        // the tail of the buffer, with no following code; and branches are in
1198        // order in latest_branches; so if the last entry ends prior to
1199        // cur_offset, then clear all entries.
1200        let cur_off = self.cur_offset();
1201        if let Some(l) = self.latest_branches.last() {
1202            if l.end < cur_off {
1203                trace!("purge_latest_branches: removing branch {:?}", l);
1204                self.latest_branches.clear();
1205            }
1206        }
1207
1208        // Post-invariant: no invariant requires any branch to appear in
1209        // `latest_branches`; it is always optional. The list-clear above thus
1210        // preserves all semantics.
1211    }
1212
1213    /// Emit a trap at some point in the future with the specified code and
1214    /// stack map.
1215    ///
1216    /// This function returns a [`MachLabel`] which will be the future address
1217    /// of the trap. Jumps should refer to this label, likely by using the
1218    /// [`MachBuffer::use_label_at_offset`] method, to get a relocation
1219    /// patched in once the address of the trap is known.
1220    ///
1221    /// This will batch all traps into the end of the function.
1222    pub fn defer_trap(&mut self, code: TrapCode) -> MachLabel {
1223        let label = self.get_label();
1224        self.pending_traps.push(MachLabelTrap {
1225            label,
1226            code,
1227            loc: self.cur_srcloc.map(|(_start, loc)| loc),
1228        });
1229        label
1230    }
1231
1232    /// Is an island needed within the next N bytes?
1233    pub fn island_needed(&self, distance: CodeOffset) -> bool {
1234        let deadline = match self.fixup_records.peek() {
1235            Some(fixup) => fixup.deadline().min(self.pending_fixup_deadline),
1236            None => self.pending_fixup_deadline,
1237        };
1238        deadline < u32::MAX && self.worst_case_end_of_island(distance) > deadline
1239    }
1240
1241    /// Returns the maximal offset that islands can reach if `distance` more
1242    /// bytes are appended.
1243    ///
1244    /// This is used to determine if veneers need insertions since jumps that
1245    /// can't reach past this point must get a veneer of some form.
1246    fn worst_case_end_of_island(&self, distance: CodeOffset) -> CodeOffset {
1247        // Assume that all fixups will require veneers and that the veneers are
1248        // the worst-case size for each platform. This is an over-generalization
1249        // to avoid iterating over the `fixup_records` list or maintaining
1250        // information about it as we go along.
1251        let island_worst_case_size = ((self.fixup_records.len() + self.pending_fixup_records.len())
1252            as u32)
1253            * (I::LabelUse::worst_case_veneer_size())
1254            + self.pending_constants_size
1255            + (self.pending_traps.len() * I::TRAP_OPCODE.len()) as u32;
1256        self.cur_offset()
1257            .saturating_add(distance)
1258            .saturating_add(island_worst_case_size)
1259    }
1260
1261    /// Emit all pending constants and required pending veneers.
1262    ///
1263    /// Should only be called if `island_needed()` returns true, i.e., if we
1264    /// actually reach a deadline. It's not necessarily a problem to do so
1265    /// otherwise but it may result in unnecessary work during emission.
1266    pub fn emit_island(&mut self, distance: CodeOffset, ctrl_plane: &mut ControlPlane) {
1267        self.emit_island_maybe_forced(ForceVeneers::No, distance, ctrl_plane);
1268    }
1269
1270    /// Same as `emit_island`, but an internal API with a `force_veneers`
1271    /// argument to force all veneers to always get emitted for debugging.
1272    fn emit_island_maybe_forced(
1273        &mut self,
1274        force_veneers: ForceVeneers,
1275        distance: CodeOffset,
1276        ctrl_plane: &mut ControlPlane,
1277    ) {
1278        // We're going to purge fixups, so no latest-branch editing can happen
1279        // anymore.
1280        self.latest_branches.clear();
1281
1282        // End the current location tracking since anything emitted during this
1283        // function shouldn't be attributed to whatever the current source
1284        // location is.
1285        //
1286        // Note that the current source location, if it's set right now, will be
1287        // restored at the end of this island emission.
1288        let cur_loc = self.cur_srcloc.map(|(_, loc)| loc);
1289        if cur_loc.is_some() {
1290            self.end_srcloc();
1291        }
1292
1293        let forced_threshold = self.worst_case_end_of_island(distance);
1294
1295        // First flush out all traps/constants so we have more labels in case
1296        // fixups are applied against these labels.
1297        //
1298        // Note that traps are placed first since this typically happens at the
1299        // end of the function and for disassemblers we try to keep all the code
1300        // contiguously together.
1301        for MachLabelTrap { label, code, loc } in mem::take(&mut self.pending_traps) {
1302            // If this trap has source information associated with it then
1303            // emit this information for the trap instruction going out now too.
1304            if let Some(loc) = loc {
1305                self.start_srcloc(loc);
1306            }
1307            self.align_to(I::LabelUse::ALIGN);
1308            self.bind_label(label, ctrl_plane);
1309            self.add_trap(code);
1310            self.put_data(I::TRAP_OPCODE);
1311            if loc.is_some() {
1312                self.end_srcloc();
1313            }
1314        }
1315
1316        for constant in mem::take(&mut self.pending_constants) {
1317            let MachBufferConstant { align, size, .. } = self.constants[constant];
1318            let label = self.constants[constant].upcoming_label.take().unwrap();
1319            self.align_to(align);
1320            self.bind_label(label, ctrl_plane);
1321            self.used_constants.push((constant, self.cur_offset()));
1322            self.get_appended_space(size);
1323        }
1324
1325        // Either handle all pending fixups because they're ready or move them
1326        // onto the `BinaryHeap` tracking all pending fixups if they aren't
1327        // ready.
1328        assert!(self.latest_branches.is_empty());
1329        for fixup in mem::take(&mut self.pending_fixup_records) {
1330            if self.should_apply_fixup(&fixup, forced_threshold) {
1331                self.handle_fixup(fixup, force_veneers, forced_threshold);
1332            } else {
1333                self.fixup_records.push(fixup);
1334            }
1335        }
1336        self.pending_fixup_deadline = u32::MAX;
1337        while let Some(fixup) = self.fixup_records.peek() {
1338            trace!("emit_island: fixup {:?}", fixup);
1339
1340            // If this fixup shouldn't be applied, that means its label isn't
1341            // defined yet and there'll be remaining space to apply a veneer if
1342            // necessary in the future after this island. In that situation
1343            // because `fixup_records` is sorted by deadline this loop can
1344            // exit.
1345            if !self.should_apply_fixup(fixup, forced_threshold) {
1346                break;
1347            }
1348
1349            let fixup = self.fixup_records.pop().unwrap();
1350            self.handle_fixup(fixup, force_veneers, forced_threshold);
1351        }
1352
1353        if let Some(loc) = cur_loc {
1354            self.start_srcloc(loc);
1355        }
1356    }
1357
1358    fn should_apply_fixup(&self, fixup: &MachLabelFixup<I>, forced_threshold: CodeOffset) -> bool {
1359        let label_offset = self.resolve_label_offset(fixup.label);
1360        label_offset != UNKNOWN_LABEL_OFFSET || fixup.deadline() < forced_threshold
1361    }
1362
1363    fn handle_fixup(
1364        &mut self,
1365        fixup: MachLabelFixup<I>,
1366        force_veneers: ForceVeneers,
1367        forced_threshold: CodeOffset,
1368    ) {
1369        let MachLabelFixup {
1370            label,
1371            offset,
1372            kind,
1373        } = fixup;
1374        let start = offset as usize;
1375        let end = (offset + kind.patch_size()) as usize;
1376        let label_offset = self.resolve_label_offset(label);
1377
1378        if label_offset != UNKNOWN_LABEL_OFFSET {
1379            // If the offset of the label for this fixup is known then
1380            // we're going to do something here-and-now. We're either going
1381            // to patch the original offset because it's an in-bounds jump,
1382            // or we're going to generate a veneer, patch the fixup to jump
1383            // to the veneer, and then keep going.
1384            //
1385            // If the label comes after the original fixup, then we should
1386            // be guaranteed that the jump is in-bounds. Otherwise there's
1387            // a bug somewhere because this method wasn't called soon
1388            // enough. All forward-jumps are tracked and should get veneers
1389            // before their deadline comes and they're unable to jump
1390            // further.
1391            //
1392            // Otherwise if the label is before the fixup, then that's a
1393            // backwards jump. If it's past the maximum negative range
1394            // then we'll emit a veneer that to jump forward to which can
1395            // then jump backwards.
1396            let veneer_required = if label_offset >= offset {
1397                assert!((label_offset - offset) <= kind.max_pos_range());
1398                false
1399            } else {
1400                (offset - label_offset) > kind.max_neg_range()
1401            };
1402            trace!(
1403                " -> label_offset = {}, known, required = {} (pos {} neg {})",
1404                label_offset,
1405                veneer_required,
1406                kind.max_pos_range(),
1407                kind.max_neg_range()
1408            );
1409
1410            if (force_veneers == ForceVeneers::Yes && kind.supports_veneer()) || veneer_required {
1411                self.emit_veneer(label, offset, kind);
1412            } else {
1413                let slice = &mut self.data[start..end];
1414                trace!("patching in-range! slice = {slice:?}; offset = {offset:#x}; label_offset = {label_offset:#x}");
1415                kind.patch(slice, offset, label_offset);
1416            }
1417        } else {
1418            // If the offset of this label is not known at this time then
1419            // that means that a veneer is required because after this
1420            // island the target can't be in range of the original target.
1421            assert!(forced_threshold - offset > kind.max_pos_range());
1422            self.emit_veneer(label, offset, kind);
1423        }
1424    }
1425
1426    /// Emits a "veneer" the `kind` code at `offset` to jump to `label`.
1427    ///
1428    /// This will generate extra machine code, using `kind`, to get a
1429    /// larger-jump-kind than `kind` allows. The code at `offset` is then
1430    /// patched to jump to our new code, and then the new code is enqueued for
1431    /// a fixup to get processed at some later time.
1432    fn emit_veneer(&mut self, label: MachLabel, offset: CodeOffset, kind: I::LabelUse) {
1433        // If this `kind` doesn't support a veneer then that's a bug in the
1434        // backend because we need to implement support for such a veneer.
1435        assert!(
1436            kind.supports_veneer(),
1437            "jump beyond the range of {kind:?} but a veneer isn't supported",
1438        );
1439
1440        // Allocate space for a veneer in the island.
1441        self.align_to(I::LabelUse::ALIGN);
1442        let veneer_offset = self.cur_offset();
1443        trace!("making a veneer at {}", veneer_offset);
1444        let start = offset as usize;
1445        let end = (offset + kind.patch_size()) as usize;
1446        let slice = &mut self.data[start..end];
1447        // Patch the original label use to refer to the veneer.
1448        trace!(
1449            "patching original at offset {} to veneer offset {}",
1450            offset,
1451            veneer_offset
1452        );
1453        kind.patch(slice, offset, veneer_offset);
1454        // Generate the veneer.
1455        let veneer_slice = self.get_appended_space(kind.veneer_size() as usize);
1456        let (veneer_fixup_off, veneer_label_use) =
1457            kind.generate_veneer(veneer_slice, veneer_offset);
1458        trace!(
1459            "generated veneer; fixup offset {}, label_use {:?}",
1460            veneer_fixup_off,
1461            veneer_label_use
1462        );
1463        // Register a new use of `label` with our new veneer fixup and
1464        // offset. This'll recalculate deadlines accordingly and
1465        // enqueue this fixup to get processed at some later
1466        // time.
1467        self.use_label_at_offset(veneer_fixup_off, label, veneer_label_use);
1468    }
1469
1470    fn finish_emission_maybe_forcing_veneers(
1471        &mut self,
1472        force_veneers: ForceVeneers,
1473        ctrl_plane: &mut ControlPlane,
1474    ) {
1475        while !self.pending_constants.is_empty()
1476            || !self.pending_traps.is_empty()
1477            || !self.fixup_records.is_empty()
1478            || !self.pending_fixup_records.is_empty()
1479        {
1480            // `emit_island()` will emit any pending veneers and constants, and
1481            // as a side-effect, will also take care of any fixups with resolved
1482            // labels eagerly.
1483            self.emit_island_maybe_forced(force_veneers, u32::MAX, ctrl_plane);
1484        }
1485
1486        // Ensure that all labels have been fixed up after the last island is emitted. This is a
1487        // full (release-mode) assert because an unresolved label means the emitted code is
1488        // incorrect.
1489        assert!(self.fixup_records.is_empty());
1490        assert!(self.pending_fixup_records.is_empty());
1491    }
1492
1493    /// Finish any deferred emissions and/or fixups.
1494    pub fn finish(
1495        mut self,
1496        constants: &VCodeConstants,
1497        ctrl_plane: &mut ControlPlane,
1498    ) -> MachBufferFinalized<Stencil> {
1499        let _tt = timing::vcode_emit_finish();
1500
1501        self.finish_emission_maybe_forcing_veneers(ForceVeneers::No, ctrl_plane);
1502
1503        let alignment = self.finish_constants(constants);
1504
1505        // Resolve all labels to their offsets.
1506        let finalized_relocs = self
1507            .relocs
1508            .iter()
1509            .map(|reloc| FinalizedMachReloc {
1510                offset: reloc.offset,
1511                kind: reloc.kind,
1512                addend: reloc.addend,
1513                target: match &reloc.target {
1514                    RelocTarget::ExternalName(name) => {
1515                        FinalizedRelocTarget::ExternalName(name.clone())
1516                    }
1517                    RelocTarget::Label(label) => {
1518                        FinalizedRelocTarget::Func(self.resolve_label_offset(*label))
1519                    }
1520                },
1521            })
1522            .collect();
1523
1524        let mut srclocs = self.srclocs;
1525        srclocs.sort_by_key(|entry| entry.start);
1526
1527        MachBufferFinalized {
1528            data: self.data,
1529            relocs: finalized_relocs,
1530            traps: self.traps,
1531            call_sites: self.call_sites,
1532            srclocs,
1533            user_stack_maps: self.user_stack_maps,
1534            unwind_info: self.unwind_info,
1535            alignment,
1536        }
1537    }
1538
1539    /// Add an external relocation at the given offset from current offset.
1540    pub fn add_reloc_at_offset<T: Into<RelocTarget> + Clone>(
1541        &mut self,
1542        offset: CodeOffset,
1543        kind: Reloc,
1544        target: &T,
1545        addend: Addend,
1546    ) {
1547        let target: RelocTarget = target.clone().into();
1548        // FIXME(#3277): This should use `I::LabelUse::from_reloc` to optionally
1549        // generate a label-use statement to track whether an island is possibly
1550        // needed to escape this function to actually get to the external name.
1551        // This is most likely to come up on AArch64 where calls between
1552        // functions use a 26-bit signed offset which gives +/- 64MB. This means
1553        // that if a function is 128MB in size and there's a call in the middle
1554        // it's impossible to reach the actual target. Also, while it's
1555        // technically possible to jump to the start of a function and then jump
1556        // further, island insertion below always inserts islands after
1557        // previously appended code so for Cranelift's own implementation this
1558        // is also a problem for 64MB functions on AArch64 which start with a
1559        // call instruction, those won't be able to escape.
1560        //
1561        // Ideally what needs to happen here is that a `LabelUse` is
1562        // transparently generated (or call-sites of this function are audited
1563        // to generate a `LabelUse` instead) and tracked internally. The actual
1564        // relocation would then change over time if and when a veneer is
1565        // inserted, where the relocation here would be patched by this
1566        // `MachBuffer` to jump to the veneer. The problem, though, is that all
1567        // this still needs to end up, in the case of a singular function,
1568        // generating a final relocation pointing either to this particular
1569        // relocation or to the veneer inserted. Additionally
1570        // `MachBuffer` needs the concept of a label which will never be
1571        // resolved, so `emit_island` doesn't trip over not actually ever
1572        // knowning what some labels are. Currently the loop in
1573        // `finish_emission_maybe_forcing_veneers` would otherwise infinitely
1574        // loop.
1575        //
1576        // For now this means that because relocs aren't tracked at all that
1577        // AArch64 functions have a rough size limits of 64MB. For now that's
1578        // somewhat reasonable and the failure mode is a panic in `MachBuffer`
1579        // when a relocation can't otherwise be resolved later, so it shouldn't
1580        // actually result in any memory unsafety or anything like that.
1581        self.relocs.push(MachReloc {
1582            offset: self.data.len() as CodeOffset + offset,
1583            kind,
1584            target,
1585            addend,
1586        });
1587    }
1588
1589    /// Add an external relocation at the current offset.
1590    pub fn add_reloc<T: Into<RelocTarget> + Clone>(
1591        &mut self,
1592        kind: Reloc,
1593        target: &T,
1594        addend: Addend,
1595    ) {
1596        self.add_reloc_at_offset(0, kind, target, addend);
1597    }
1598
1599    /// Add a trap record at the current offset.
1600    pub fn add_trap(&mut self, code: TrapCode) {
1601        self.traps.push(MachTrap {
1602            offset: self.data.len() as CodeOffset,
1603            code,
1604        });
1605    }
1606
1607    /// Add a call-site record at the current offset.
1608    pub fn add_call_site(&mut self) {
1609        self.call_sites.push(MachCallSite {
1610            ret_addr: self.data.len() as CodeOffset,
1611        });
1612    }
1613
1614    /// Add an unwind record at the current offset.
1615    pub fn add_unwind(&mut self, unwind: UnwindInst) {
1616        self.unwind_info.push((self.cur_offset(), unwind));
1617    }
1618
1619    /// Set the `SourceLoc` for code from this offset until the offset at the
1620    /// next call to `end_srcloc()`.
1621    /// Returns the current [CodeOffset] and [RelSourceLoc].
1622    pub fn start_srcloc(&mut self, loc: RelSourceLoc) -> (CodeOffset, RelSourceLoc) {
1623        let cur = (self.cur_offset(), loc);
1624        self.cur_srcloc = Some(cur);
1625        cur
1626    }
1627
1628    /// Mark the end of the `SourceLoc` segment started at the last
1629    /// `start_srcloc()` call.
1630    pub fn end_srcloc(&mut self) {
1631        let (start, loc) = self
1632            .cur_srcloc
1633            .take()
1634            .expect("end_srcloc() called without start_srcloc()");
1635        let end = self.cur_offset();
1636        // Skip zero-length extends.
1637        debug_assert!(end >= start);
1638        if end > start {
1639            self.srclocs.push(MachSrcLoc { start, end, loc });
1640        }
1641    }
1642
1643    /// Push a user stack map onto this buffer.
1644    ///
1645    /// The stack map is associated with the given `return_addr` code
1646    /// offset. This must be the PC for the instruction just *after* this stack
1647    /// map's associated instruction. For example in the sequence `call $foo;
1648    /// add r8, rax`, the `return_addr` must be the offset of the start of the
1649    /// `add` instruction.
1650    ///
1651    /// Stack maps must be pushed in sorted `return_addr` order.
1652    pub fn push_user_stack_map(
1653        &mut self,
1654        emit_state: &I::State,
1655        return_addr: CodeOffset,
1656        mut stack_map: ir::UserStackMap,
1657    ) {
1658        let span = emit_state.frame_layout().active_size();
1659        trace!("Adding user stack map @ {return_addr:#x} spanning {span} bytes: {stack_map:?}");
1660
1661        debug_assert!(
1662            self.user_stack_maps
1663                .last()
1664                .map_or(true, |(prev_addr, _, _)| *prev_addr < return_addr),
1665            "pushed stack maps out of order: {} is not less than {}",
1666            self.user_stack_maps.last().unwrap().0,
1667            return_addr,
1668        );
1669
1670        stack_map.finalize(emit_state.frame_layout().sp_to_sized_stack_slots());
1671        self.user_stack_maps.push((return_addr, span, stack_map));
1672    }
1673}
1674
1675impl<I: VCodeInst> Extend<u8> for MachBuffer<I> {
1676    fn extend<T: IntoIterator<Item = u8>>(&mut self, iter: T) {
1677        for b in iter {
1678            self.put1(b);
1679        }
1680    }
1681}
1682
1683impl<T: CompilePhase> MachBufferFinalized<T> {
1684    /// Get a list of source location mapping tuples in sorted-by-start-offset order.
1685    pub fn get_srclocs_sorted(&self) -> &[T::MachSrcLocType] {
1686        &self.srclocs[..]
1687    }
1688
1689    /// Get the total required size for the code.
1690    pub fn total_size(&self) -> CodeOffset {
1691        self.data.len() as CodeOffset
1692    }
1693
1694    /// Return the code in this mach buffer as a hex string for testing purposes.
1695    pub fn stringify_code_bytes(&self) -> String {
1696        // This is pretty lame, but whatever ..
1697        use std::fmt::Write;
1698        let mut s = String::with_capacity(self.data.len() * 2);
1699        for b in &self.data {
1700            write!(&mut s, "{b:02X}").unwrap();
1701        }
1702        s
1703    }
1704
1705    /// Get the code bytes.
1706    pub fn data(&self) -> &[u8] {
1707        // N.B.: we emit every section into the .text section as far as
1708        // the `CodeSink` is concerned; we do not bother to segregate
1709        // the contents into the actual program text, the jumptable and the
1710        // rodata (constant pool). This allows us to generate code assuming
1711        // that these will not be relocated relative to each other, and avoids
1712        // having to designate each section as belonging in one of the three
1713        // fixed categories defined by `CodeSink`. If this becomes a problem
1714        // later (e.g. because of memory permissions or similar), we can
1715        // add this designation and segregate the output; take care, however,
1716        // to add the appropriate relocations in this case.
1717
1718        &self.data[..]
1719    }
1720
1721    /// Get the list of external relocations for this code.
1722    pub fn relocs(&self) -> &[FinalizedMachReloc] {
1723        &self.relocs[..]
1724    }
1725
1726    /// Get the list of trap records for this code.
1727    pub fn traps(&self) -> &[MachTrap] {
1728        &self.traps[..]
1729    }
1730
1731    /// Get the user stack map metadata for this code.
1732    pub fn user_stack_maps(&self) -> &[(CodeOffset, u32, ir::UserStackMap)] {
1733        &self.user_stack_maps
1734    }
1735
1736    /// Take this buffer's user strack map metadata.
1737    pub fn take_user_stack_maps(&mut self) -> SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]> {
1738        mem::take(&mut self.user_stack_maps)
1739    }
1740
1741    /// Get the list of call sites for this code.
1742    pub fn call_sites(&self) -> &[MachCallSite] {
1743        &self.call_sites[..]
1744    }
1745}
1746
1747/// Metadata about a constant.
1748struct MachBufferConstant {
1749    /// A label which has not yet been bound which can be used for this
1750    /// constant.
1751    ///
1752    /// This is lazily created when a label is requested for a constant and is
1753    /// cleared when a constant is emitted.
1754    upcoming_label: Option<MachLabel>,
1755    /// Required alignment.
1756    align: CodeOffset,
1757    /// The byte size of this constant.
1758    size: usize,
1759}
1760
1761/// A trap that is deferred to the next time an island is emitted for either
1762/// traps, constants, or fixups.
1763struct MachLabelTrap {
1764    /// This label will refer to the trap's offset.
1765    label: MachLabel,
1766    /// The code associated with this trap.
1767    code: TrapCode,
1768    /// An optional source location to assign for this trap.
1769    loc: Option<RelSourceLoc>,
1770}
1771
1772/// A fixup to perform on the buffer once code is emitted. Fixups always refer
1773/// to labels and patch the code based on label offsets. Hence, they are like
1774/// relocations, but internal to one buffer.
1775#[derive(Debug)]
1776struct MachLabelFixup<I: VCodeInst> {
1777    /// The label whose offset controls this fixup.
1778    label: MachLabel,
1779    /// The offset to fix up / patch to refer to this label.
1780    offset: CodeOffset,
1781    /// The kind of fixup. This is architecture-specific; each architecture may have,
1782    /// e.g., several types of branch instructions, each with differently-sized
1783    /// offset fields and different places within the instruction to place the
1784    /// bits.
1785    kind: I::LabelUse,
1786}
1787
1788impl<I: VCodeInst> MachLabelFixup<I> {
1789    fn deadline(&self) -> CodeOffset {
1790        self.offset.saturating_add(self.kind.max_pos_range())
1791    }
1792}
1793
1794impl<I: VCodeInst> PartialEq for MachLabelFixup<I> {
1795    fn eq(&self, other: &Self) -> bool {
1796        self.deadline() == other.deadline()
1797    }
1798}
1799
1800impl<I: VCodeInst> Eq for MachLabelFixup<I> {}
1801
1802impl<I: VCodeInst> PartialOrd for MachLabelFixup<I> {
1803    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1804        Some(self.cmp(other))
1805    }
1806}
1807
1808impl<I: VCodeInst> Ord for MachLabelFixup<I> {
1809    fn cmp(&self, other: &Self) -> Ordering {
1810        other.deadline().cmp(&self.deadline())
1811    }
1812}
1813
1814/// A relocation resulting from a compilation.
1815#[derive(Clone, Debug, PartialEq)]
1816#[cfg_attr(
1817    feature = "enable-serde",
1818    derive(serde_derive::Serialize, serde_derive::Deserialize)
1819)]
1820pub struct MachRelocBase<T> {
1821    /// The offset at which the relocation applies, *relative to the
1822    /// containing section*.
1823    pub offset: CodeOffset,
1824    /// The kind of relocation.
1825    pub kind: Reloc,
1826    /// The external symbol / name to which this relocation refers.
1827    pub target: T,
1828    /// The addend to add to the symbol value.
1829    pub addend: i64,
1830}
1831
1832type MachReloc = MachRelocBase<RelocTarget>;
1833
1834/// A relocation resulting from a compilation.
1835pub type FinalizedMachReloc = MachRelocBase<FinalizedRelocTarget>;
1836
1837/// A Relocation target
1838#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1839pub enum RelocTarget {
1840    /// Points to an [ExternalName] outside the current function.
1841    ExternalName(ExternalName),
1842    /// Points to a [MachLabel] inside this function.
1843    /// This is different from [MachLabelFixup] in that both the relocation and the
1844    /// label will be emitted and are only resolved at link time.
1845    ///
1846    /// There is no reason to prefer this over [MachLabelFixup] unless the ABI requires it.
1847    Label(MachLabel),
1848}
1849
1850impl From<ExternalName> for RelocTarget {
1851    fn from(name: ExternalName) -> Self {
1852        Self::ExternalName(name)
1853    }
1854}
1855
1856impl From<MachLabel> for RelocTarget {
1857    fn from(label: MachLabel) -> Self {
1858        Self::Label(label)
1859    }
1860}
1861
1862/// A Relocation target
1863#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1864#[cfg_attr(
1865    feature = "enable-serde",
1866    derive(serde_derive::Serialize, serde_derive::Deserialize)
1867)]
1868pub enum FinalizedRelocTarget {
1869    /// Points to an [ExternalName] outside the current function.
1870    ExternalName(ExternalName),
1871    /// Points to a [CodeOffset] from the start of the current function.
1872    Func(CodeOffset),
1873}
1874
1875impl FinalizedRelocTarget {
1876    /// Returns a display for the current [FinalizedRelocTarget], with extra context to prettify the
1877    /// output.
1878    pub fn display<'a>(&'a self, params: Option<&'a FunctionParameters>) -> String {
1879        match self {
1880            FinalizedRelocTarget::ExternalName(name) => format!("{}", name.display(params)),
1881            FinalizedRelocTarget::Func(offset) => format!("func+{offset}"),
1882        }
1883    }
1884}
1885
1886/// A trap record resulting from a compilation.
1887#[derive(Clone, Debug, PartialEq)]
1888#[cfg_attr(
1889    feature = "enable-serde",
1890    derive(serde_derive::Serialize, serde_derive::Deserialize)
1891)]
1892pub struct MachTrap {
1893    /// The offset at which the trap instruction occurs, *relative to the
1894    /// containing section*.
1895    pub offset: CodeOffset,
1896    /// The trap code.
1897    pub code: TrapCode,
1898}
1899
1900/// A call site record resulting from a compilation.
1901#[derive(Clone, Debug, PartialEq)]
1902#[cfg_attr(
1903    feature = "enable-serde",
1904    derive(serde_derive::Serialize, serde_derive::Deserialize)
1905)]
1906pub struct MachCallSite {
1907    /// The offset of the call's return address, *relative to the containing section*.
1908    pub ret_addr: CodeOffset,
1909}
1910
1911/// A source-location mapping resulting from a compilation.
1912#[derive(PartialEq, Debug, Clone)]
1913#[cfg_attr(
1914    feature = "enable-serde",
1915    derive(serde_derive::Serialize, serde_derive::Deserialize)
1916)]
1917pub struct MachSrcLoc<T: CompilePhase> {
1918    /// The start of the region of code corresponding to a source location.
1919    /// This is relative to the start of the function, not to the start of the
1920    /// section.
1921    pub start: CodeOffset,
1922    /// The end of the region of code corresponding to a source location.
1923    /// This is relative to the start of the section, not to the start of the
1924    /// section.
1925    pub end: CodeOffset,
1926    /// The source location.
1927    pub loc: T::SourceLocType,
1928}
1929
1930impl MachSrcLoc<Stencil> {
1931    fn apply_base_srcloc(self, base_srcloc: SourceLoc) -> MachSrcLoc<Final> {
1932        MachSrcLoc {
1933            start: self.start,
1934            end: self.end,
1935            loc: self.loc.expand(base_srcloc),
1936        }
1937    }
1938}
1939
1940/// Record of branch instruction in the buffer, to facilitate editing.
1941#[derive(Clone, Debug)]
1942struct MachBranch {
1943    start: CodeOffset,
1944    end: CodeOffset,
1945    target: MachLabel,
1946    fixup: usize,
1947    inverted: Option<SmallVec<[u8; 8]>>,
1948    /// All labels pointing to the start of this branch. For correctness, this
1949    /// *must* be complete (i.e., must contain all labels whose resolved offsets
1950    /// are at the start of this branch): we rely on being able to redirect all
1951    /// labels that could jump to this branch before removing it, if it is
1952    /// otherwise unreachable.
1953    labels_at_this_branch: SmallVec<[MachLabel; 4]>,
1954}
1955
1956impl MachBranch {
1957    fn is_cond(&self) -> bool {
1958        self.inverted.is_some()
1959    }
1960    fn is_uncond(&self) -> bool {
1961        self.inverted.is_none()
1962    }
1963}
1964
1965/// Implementation of the `TextSectionBuilder` trait backed by `MachBuffer`.
1966///
1967/// Note that `MachBuffer` was primarily written for intra-function references
1968/// of jumps between basic blocks, but it's also quite usable for entire text
1969/// sections and resolving references between functions themselves. This
1970/// builder interprets "blocks" as labeled functions for the purposes of
1971/// resolving labels internally in the buffer.
1972pub struct MachTextSectionBuilder<I: VCodeInst> {
1973    buf: MachBuffer<I>,
1974    next_func: usize,
1975    force_veneers: ForceVeneers,
1976}
1977
1978impl<I: VCodeInst> MachTextSectionBuilder<I> {
1979    /// Creates a new text section builder which will have `num_funcs` functions
1980    /// pushed into it.
1981    pub fn new(num_funcs: usize) -> MachTextSectionBuilder<I> {
1982        let mut buf = MachBuffer::new();
1983        buf.reserve_labels_for_blocks(num_funcs);
1984        MachTextSectionBuilder {
1985            buf,
1986            next_func: 0,
1987            force_veneers: ForceVeneers::No,
1988        }
1989    }
1990}
1991
1992impl<I: VCodeInst> TextSectionBuilder for MachTextSectionBuilder<I> {
1993    fn append(
1994        &mut self,
1995        labeled: bool,
1996        func: &[u8],
1997        align: u32,
1998        ctrl_plane: &mut ControlPlane,
1999    ) -> u64 {
2000        // Conditionally emit an island if it's necessary to resolve jumps
2001        // between functions which are too far away.
2002        let size = func.len() as u32;
2003        if self.force_veneers == ForceVeneers::Yes || self.buf.island_needed(size) {
2004            self.buf
2005                .emit_island_maybe_forced(self.force_veneers, size, ctrl_plane);
2006        }
2007
2008        self.buf.align_to(align);
2009        let pos = self.buf.cur_offset();
2010        if labeled {
2011            self.buf.bind_label(
2012                MachLabel::from_block(BlockIndex::new(self.next_func)),
2013                ctrl_plane,
2014            );
2015            self.next_func += 1;
2016        }
2017        self.buf.put_data(func);
2018        u64::from(pos)
2019    }
2020
2021    fn resolve_reloc(&mut self, offset: u64, reloc: Reloc, addend: Addend, target: usize) -> bool {
2022        crate::trace!(
2023            "Resolving relocation @ {offset:#x} + {addend:#x} to target {target} of kind {reloc:?}"
2024        );
2025        let label = MachLabel::from_block(BlockIndex::new(target));
2026        let offset = u32::try_from(offset).unwrap();
2027        match I::LabelUse::from_reloc(reloc, addend) {
2028            Some(label_use) => {
2029                self.buf.use_label_at_offset(offset, label, label_use);
2030                true
2031            }
2032            None => false,
2033        }
2034    }
2035
2036    fn force_veneers(&mut self) {
2037        self.force_veneers = ForceVeneers::Yes;
2038    }
2039
2040    fn finish(&mut self, ctrl_plane: &mut ControlPlane) -> Vec<u8> {
2041        // Double-check all functions were pushed.
2042        assert_eq!(self.next_func, self.buf.label_offsets.len());
2043
2044        // Finish up any veneers, if necessary.
2045        self.buf
2046            .finish_emission_maybe_forcing_veneers(self.force_veneers, ctrl_plane);
2047
2048        // We don't need the data any more, so return it to the caller.
2049        mem::take(&mut self.buf.data).into_vec()
2050    }
2051}
2052
2053// We use an actual instruction definition to do tests, so we depend on the `arm64` feature here.
2054#[cfg(all(test, feature = "arm64"))]
2055mod test {
2056    use cranelift_entity::EntityRef as _;
2057
2058    use super::*;
2059    use crate::ir::UserExternalNameRef;
2060    use crate::isa::aarch64::inst::xreg;
2061    use crate::isa::aarch64::inst::{BranchTarget, CondBrKind, EmitInfo, Inst};
2062    use crate::machinst::{MachInstEmit, MachInstEmitState};
2063    use crate::settings;
2064
2065    fn label(n: u32) -> MachLabel {
2066        MachLabel::from_block(BlockIndex::new(n as usize))
2067    }
2068    fn target(n: u32) -> BranchTarget {
2069        BranchTarget::Label(label(n))
2070    }
2071
2072    #[test]
2073    fn test_elide_jump_to_next() {
2074        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2075        let mut buf = MachBuffer::new();
2076        let mut state = <Inst as MachInstEmit>::State::default();
2077        let constants = Default::default();
2078
2079        buf.reserve_labels_for_blocks(2);
2080        buf.bind_label(label(0), state.ctrl_plane_mut());
2081        let inst = Inst::Jump { dest: target(1) };
2082        inst.emit(&mut buf, &info, &mut state);
2083        buf.bind_label(label(1), state.ctrl_plane_mut());
2084        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2085        assert_eq!(0, buf.total_size());
2086    }
2087
2088    #[test]
2089    fn test_elide_trivial_jump_blocks() {
2090        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2091        let mut buf = MachBuffer::new();
2092        let mut state = <Inst as MachInstEmit>::State::default();
2093        let constants = Default::default();
2094
2095        buf.reserve_labels_for_blocks(4);
2096
2097        buf.bind_label(label(0), state.ctrl_plane_mut());
2098        let inst = Inst::CondBr {
2099            kind: CondBrKind::NotZero(xreg(0)),
2100            taken: target(1),
2101            not_taken: target(2),
2102        };
2103        inst.emit(&mut buf, &info, &mut state);
2104
2105        buf.bind_label(label(1), state.ctrl_plane_mut());
2106        let inst = Inst::Jump { dest: target(3) };
2107        inst.emit(&mut buf, &info, &mut state);
2108
2109        buf.bind_label(label(2), state.ctrl_plane_mut());
2110        let inst = Inst::Jump { dest: target(3) };
2111        inst.emit(&mut buf, &info, &mut state);
2112
2113        buf.bind_label(label(3), state.ctrl_plane_mut());
2114
2115        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2116        assert_eq!(0, buf.total_size());
2117    }
2118
2119    #[test]
2120    fn test_flip_cond() {
2121        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2122        let mut buf = MachBuffer::new();
2123        let mut state = <Inst as MachInstEmit>::State::default();
2124        let constants = Default::default();
2125
2126        buf.reserve_labels_for_blocks(4);
2127
2128        buf.bind_label(label(0), state.ctrl_plane_mut());
2129        let inst = Inst::CondBr {
2130            kind: CondBrKind::Zero(xreg(0)),
2131            taken: target(1),
2132            not_taken: target(2),
2133        };
2134        inst.emit(&mut buf, &info, &mut state);
2135
2136        buf.bind_label(label(1), state.ctrl_plane_mut());
2137        let inst = Inst::Nop4;
2138        inst.emit(&mut buf, &info, &mut state);
2139
2140        buf.bind_label(label(2), state.ctrl_plane_mut());
2141        let inst = Inst::Udf {
2142            trap_code: TrapCode::Interrupt,
2143        };
2144        inst.emit(&mut buf, &info, &mut state);
2145
2146        buf.bind_label(label(3), state.ctrl_plane_mut());
2147
2148        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2149
2150        let mut buf2 = MachBuffer::new();
2151        let mut state = Default::default();
2152        let inst = Inst::TrapIf {
2153            kind: CondBrKind::NotZero(xreg(0)),
2154            trap_code: TrapCode::Interrupt,
2155        };
2156        inst.emit(&mut buf2, &info, &mut state);
2157        let inst = Inst::Nop4;
2158        inst.emit(&mut buf2, &info, &mut state);
2159
2160        let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2161
2162        assert_eq!(buf.data, buf2.data);
2163    }
2164
2165    #[test]
2166    fn test_island() {
2167        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2168        let mut buf = MachBuffer::new();
2169        let mut state = <Inst as MachInstEmit>::State::default();
2170        let constants = Default::default();
2171
2172        buf.reserve_labels_for_blocks(4);
2173
2174        buf.bind_label(label(0), state.ctrl_plane_mut());
2175        let inst = Inst::CondBr {
2176            kind: CondBrKind::NotZero(xreg(0)),
2177            taken: target(2),
2178            not_taken: target(3),
2179        };
2180        inst.emit(&mut buf, &info, &mut state);
2181
2182        buf.bind_label(label(1), state.ctrl_plane_mut());
2183        while buf.cur_offset() < 2000000 {
2184            if buf.island_needed(0) {
2185                buf.emit_island(0, state.ctrl_plane_mut());
2186            }
2187            let inst = Inst::Nop4;
2188            inst.emit(&mut buf, &info, &mut state);
2189        }
2190
2191        buf.bind_label(label(2), state.ctrl_plane_mut());
2192        let inst = Inst::Nop4;
2193        inst.emit(&mut buf, &info, &mut state);
2194
2195        buf.bind_label(label(3), state.ctrl_plane_mut());
2196        let inst = Inst::Nop4;
2197        inst.emit(&mut buf, &info, &mut state);
2198
2199        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2200
2201        assert_eq!(2000000 + 8, buf.total_size());
2202
2203        let mut buf2 = MachBuffer::new();
2204        let mut state = Default::default();
2205        let inst = Inst::CondBr {
2206            kind: CondBrKind::NotZero(xreg(0)),
2207
2208            // This conditionally taken branch has a 19-bit constant, shifted
2209            // to the left by two, giving us a 21-bit range in total. Half of
2210            // this range positive so the we should be around 1 << 20 bytes
2211            // away for our jump target.
2212            //
2213            // There are two pending fixups by the time we reach this point,
2214            // one for this 19-bit jump and one for the unconditional 26-bit
2215            // jump below. A 19-bit veneer is 4 bytes large and the 26-bit
2216            // veneer is 20 bytes large, which means that pessimistically
2217            // assuming we'll need two veneers. Currently each veneer is
2218            // pessimistically assumed to be the maximal size which means we
2219            // need 40 bytes of extra space, meaning that the actual island
2220            // should come 40-bytes before the deadline.
2221            taken: BranchTarget::ResolvedOffset((1 << 20) - 20 - 20),
2222
2223            // This branch is in-range so no veneers should be needed, it should
2224            // go directly to the target.
2225            not_taken: BranchTarget::ResolvedOffset(2000000 + 4 - 4),
2226        };
2227        inst.emit(&mut buf2, &info, &mut state);
2228
2229        let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2230
2231        assert_eq!(&buf.data[0..8], &buf2.data[..]);
2232    }
2233
2234    #[test]
2235    fn test_island_backward() {
2236        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2237        let mut buf = MachBuffer::new();
2238        let mut state = <Inst as MachInstEmit>::State::default();
2239        let constants = Default::default();
2240
2241        buf.reserve_labels_for_blocks(4);
2242
2243        buf.bind_label(label(0), state.ctrl_plane_mut());
2244        let inst = Inst::Nop4;
2245        inst.emit(&mut buf, &info, &mut state);
2246
2247        buf.bind_label(label(1), state.ctrl_plane_mut());
2248        let inst = Inst::Nop4;
2249        inst.emit(&mut buf, &info, &mut state);
2250
2251        buf.bind_label(label(2), state.ctrl_plane_mut());
2252        while buf.cur_offset() < 2000000 {
2253            let inst = Inst::Nop4;
2254            inst.emit(&mut buf, &info, &mut state);
2255        }
2256
2257        buf.bind_label(label(3), state.ctrl_plane_mut());
2258        let inst = Inst::CondBr {
2259            kind: CondBrKind::NotZero(xreg(0)),
2260            taken: target(0),
2261            not_taken: target(1),
2262        };
2263        inst.emit(&mut buf, &info, &mut state);
2264
2265        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2266
2267        assert_eq!(2000000 + 12, buf.total_size());
2268
2269        let mut buf2 = MachBuffer::new();
2270        let mut state = Default::default();
2271        let inst = Inst::CondBr {
2272            kind: CondBrKind::NotZero(xreg(0)),
2273            taken: BranchTarget::ResolvedOffset(8),
2274            not_taken: BranchTarget::ResolvedOffset(4 - (2000000 + 4)),
2275        };
2276        inst.emit(&mut buf2, &info, &mut state);
2277        let inst = Inst::Jump {
2278            dest: BranchTarget::ResolvedOffset(-(2000000 + 8)),
2279        };
2280        inst.emit(&mut buf2, &info, &mut state);
2281
2282        let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2283
2284        assert_eq!(&buf.data[2000000..], &buf2.data[..]);
2285    }
2286
2287    #[test]
2288    fn test_multiple_redirect() {
2289        // label0:
2290        //   cbz x0, label1
2291        //   b label2
2292        // label1:
2293        //   b label3
2294        // label2:
2295        //   nop
2296        //   nop
2297        //   b label0
2298        // label3:
2299        //   b label4
2300        // label4:
2301        //   b label5
2302        // label5:
2303        //   b label7
2304        // label6:
2305        //   nop
2306        // label7:
2307        //   ret
2308        //
2309        // -- should become:
2310        //
2311        // label0:
2312        //   cbz x0, label7
2313        // label2:
2314        //   nop
2315        //   nop
2316        //   b label0
2317        // label6:
2318        //   nop
2319        // label7:
2320        //   ret
2321
2322        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2323        let mut buf = MachBuffer::new();
2324        let mut state = <Inst as MachInstEmit>::State::default();
2325        let constants = Default::default();
2326
2327        buf.reserve_labels_for_blocks(8);
2328
2329        buf.bind_label(label(0), state.ctrl_plane_mut());
2330        let inst = Inst::CondBr {
2331            kind: CondBrKind::Zero(xreg(0)),
2332            taken: target(1),
2333            not_taken: target(2),
2334        };
2335        inst.emit(&mut buf, &info, &mut state);
2336
2337        buf.bind_label(label(1), state.ctrl_plane_mut());
2338        let inst = Inst::Jump { dest: target(3) };
2339        inst.emit(&mut buf, &info, &mut state);
2340
2341        buf.bind_label(label(2), state.ctrl_plane_mut());
2342        let inst = Inst::Nop4;
2343        inst.emit(&mut buf, &info, &mut state);
2344        inst.emit(&mut buf, &info, &mut state);
2345        let inst = Inst::Jump { dest: target(0) };
2346        inst.emit(&mut buf, &info, &mut state);
2347
2348        buf.bind_label(label(3), state.ctrl_plane_mut());
2349        let inst = Inst::Jump { dest: target(4) };
2350        inst.emit(&mut buf, &info, &mut state);
2351
2352        buf.bind_label(label(4), state.ctrl_plane_mut());
2353        let inst = Inst::Jump { dest: target(5) };
2354        inst.emit(&mut buf, &info, &mut state);
2355
2356        buf.bind_label(label(5), state.ctrl_plane_mut());
2357        let inst = Inst::Jump { dest: target(7) };
2358        inst.emit(&mut buf, &info, &mut state);
2359
2360        buf.bind_label(label(6), state.ctrl_plane_mut());
2361        let inst = Inst::Nop4;
2362        inst.emit(&mut buf, &info, &mut state);
2363
2364        buf.bind_label(label(7), state.ctrl_plane_mut());
2365        let inst = Inst::Ret {};
2366        inst.emit(&mut buf, &info, &mut state);
2367
2368        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2369
2370        let golden_data = vec![
2371            0xa0, 0x00, 0x00, 0xb4, // cbz x0, 0x14
2372            0x1f, 0x20, 0x03, 0xd5, // nop
2373            0x1f, 0x20, 0x03, 0xd5, // nop
2374            0xfd, 0xff, 0xff, 0x17, // b 0
2375            0x1f, 0x20, 0x03, 0xd5, // nop
2376            0xc0, 0x03, 0x5f, 0xd6, // ret
2377        ];
2378
2379        assert_eq!(&golden_data[..], &buf.data[..]);
2380    }
2381
2382    #[test]
2383    fn test_handle_branch_cycle() {
2384        // label0:
2385        //   b label1
2386        // label1:
2387        //   b label2
2388        // label2:
2389        //   b label3
2390        // label3:
2391        //   b label4
2392        // label4:
2393        //   b label1  // note: not label0 (to make it interesting).
2394        //
2395        // -- should become:
2396        //
2397        // label0, label1, ..., label4:
2398        //   b label0
2399        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2400        let mut buf = MachBuffer::new();
2401        let mut state = <Inst as MachInstEmit>::State::default();
2402        let constants = Default::default();
2403
2404        buf.reserve_labels_for_blocks(5);
2405
2406        buf.bind_label(label(0), state.ctrl_plane_mut());
2407        let inst = Inst::Jump { dest: target(1) };
2408        inst.emit(&mut buf, &info, &mut state);
2409
2410        buf.bind_label(label(1), state.ctrl_plane_mut());
2411        let inst = Inst::Jump { dest: target(2) };
2412        inst.emit(&mut buf, &info, &mut state);
2413
2414        buf.bind_label(label(2), state.ctrl_plane_mut());
2415        let inst = Inst::Jump { dest: target(3) };
2416        inst.emit(&mut buf, &info, &mut state);
2417
2418        buf.bind_label(label(3), state.ctrl_plane_mut());
2419        let inst = Inst::Jump { dest: target(4) };
2420        inst.emit(&mut buf, &info, &mut state);
2421
2422        buf.bind_label(label(4), state.ctrl_plane_mut());
2423        let inst = Inst::Jump { dest: target(1) };
2424        inst.emit(&mut buf, &info, &mut state);
2425
2426        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2427
2428        let golden_data = vec![
2429            0x00, 0x00, 0x00, 0x14, // b 0
2430        ];
2431
2432        assert_eq!(&golden_data[..], &buf.data[..]);
2433    }
2434
2435    #[test]
2436    fn metadata_records() {
2437        let mut buf = MachBuffer::<Inst>::new();
2438        let ctrl_plane = &mut Default::default();
2439        let constants = Default::default();
2440
2441        buf.reserve_labels_for_blocks(1);
2442
2443        buf.bind_label(label(0), ctrl_plane);
2444        buf.put1(1);
2445        buf.add_trap(TrapCode::HeapOutOfBounds);
2446        buf.put1(2);
2447        buf.add_trap(TrapCode::IntegerOverflow);
2448        buf.add_trap(TrapCode::IntegerDivisionByZero);
2449        buf.add_call_site();
2450        buf.add_reloc(
2451            Reloc::Abs4,
2452            &ExternalName::User(UserExternalNameRef::new(0)),
2453            0,
2454        );
2455        buf.put1(3);
2456        buf.add_reloc(
2457            Reloc::Abs8,
2458            &ExternalName::User(UserExternalNameRef::new(1)),
2459            1,
2460        );
2461        buf.put1(4);
2462
2463        let buf = buf.finish(&constants, ctrl_plane);
2464
2465        assert_eq!(buf.data(), &[1, 2, 3, 4]);
2466        assert_eq!(
2467            buf.traps()
2468                .iter()
2469                .map(|trap| (trap.offset, trap.code))
2470                .collect::<Vec<_>>(),
2471            vec![
2472                (1, TrapCode::HeapOutOfBounds),
2473                (2, TrapCode::IntegerOverflow),
2474                (2, TrapCode::IntegerDivisionByZero)
2475            ]
2476        );
2477        assert_eq!(
2478            buf.call_sites()
2479                .iter()
2480                .map(|call_site| call_site.ret_addr)
2481                .collect::<Vec<_>>(),
2482            vec![2]
2483        );
2484        assert_eq!(
2485            buf.relocs()
2486                .iter()
2487                .map(|reloc| (reloc.offset, reloc.kind))
2488                .collect::<Vec<_>>(),
2489            vec![(2, Reloc::Abs4), (3, Reloc::Abs8)]
2490        );
2491    }
2492}