cranelift_codegen/machinst/lower.rs
1//! This module implements lowering (instruction selection) from Cranelift IR
2//! to machine instructions with virtual registers. This is *almost* the final
3//! machine code, except for register allocation.
4
5// TODO: separate the IR-query core of `Lower` from the lowering logic built on
6// top of it, e.g. the side-effect/coloring analysis and the scan support.
7
8use crate::entity::SecondaryMap;
9use crate::inst_predicates::{has_lowering_side_effect, is_constant_64bit};
10use crate::ir::pcc::{Fact, FactContext, PccError, PccResult};
11use crate::ir::{
12 ArgumentPurpose, Block, Constant, ConstantData, DataFlowGraph, ExternalName, Function,
13 GlobalValue, GlobalValueData, Immediate, Inst, InstructionData, MemFlags, RelSourceLoc, Type,
14 Value, ValueDef, ValueLabelAssignments, ValueLabelStart,
15};
16use crate::machinst::{
17 writable_value_regs, BackwardsInsnIndex, BlockIndex, BlockLoweringOrder, Callee, InsnIndex,
18 LoweredBlock, MachLabel, Reg, SigSet, VCode, VCodeBuilder, VCodeConstant, VCodeConstantData,
19 VCodeConstants, VCodeInst, ValueRegs, Writable,
20};
21use crate::settings::Flags;
22use crate::{trace, CodegenResult};
23use alloc::vec::Vec;
24use cranelift_control::ControlPlane;
25use rustc_hash::{FxHashMap, FxHashSet};
26use smallvec::{smallvec, SmallVec};
27use std::fmt::Debug;
28
29use super::{VCodeBuildDirection, VRegAllocator};
30
31/// A vector of ValueRegs, used to represent the outputs of an instruction.
32pub type InstOutput = SmallVec<[ValueRegs<Reg>; 2]>;
33
34/// An "instruction color" partitions CLIF instructions by side-effecting ops.
35/// All instructions with the same "color" are guaranteed not to be separated by
36/// any side-effecting op (for this purpose, loads are also considered
37/// side-effecting, to avoid subtle questions w.r.t. the memory model), and
38/// furthermore, it is guaranteed that for any two instructions A and B such
39/// that color(A) == color(B), either A dominates B and B postdominates A, or
40/// vice-versa. (For now, in practice, only ops in the same basic block can ever
41/// have the same color, trivially providing the second condition.) Intuitively,
42/// this means that the ops of the same color must always execute "together", as
43/// part of one atomic contiguous section of the dynamic execution trace, and
44/// they can be freely permuted (modulo true dataflow dependencies) without
45/// affecting program behavior.
46#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
47struct InstColor(u32);
48impl InstColor {
49 fn new(n: u32) -> InstColor {
50 InstColor(n)
51 }
52
53 /// Get an arbitrary index representing this color. The index is unique
54 /// *within a single function compilation*, but indices may be reused across
55 /// functions.
56 pub fn get(self) -> u32 {
57 self.0
58 }
59}
60
61/// A representation of all of the ways in which a value is available, aside
62/// from as a direct register.
63///
64/// - An instruction, if it would be allowed to occur at the current location
65/// instead (see [Lower::get_input_as_source_or_const()] for more details).
66///
67/// - A constant, if the value is known to be a constant.
68#[derive(Clone, Copy, Debug)]
69pub struct NonRegInput {
70 /// An instruction produces this value (as the given output), and its
71 /// computation (and side-effect if applicable) could occur at the
72 /// current instruction's location instead.
73 ///
74 /// If this instruction's operation is merged into the current instruction,
75 /// the backend must call [Lower::sink_inst()].
76 ///
77 /// This enum indicates whether this use of the source instruction
78 /// is unique or not.
79 pub inst: InputSourceInst,
80 /// The value is a known constant.
81 pub constant: Option<u64>,
82}
83
84/// When examining an input to an instruction, this enum provides one
85/// of several options: there is or isn't a single instruction (that
86/// we can see and merge with) that produces that input's value, and
87/// we are or aren't the single user of that instruction.
88#[derive(Clone, Copy, Debug)]
89pub enum InputSourceInst {
90 /// The input in question is the single, unique use of the given
91 /// instruction and output index, and it can be sunk to the
92 /// location of this input.
93 UniqueUse(Inst, usize),
94 /// The input in question is one of multiple uses of the given
95 /// instruction. It can still be sunk to the location of this
96 /// input.
97 Use(Inst, usize),
98 /// We cannot determine which instruction produced the input, or
99 /// it is one of several instructions (e.g., due to a control-flow
100 /// merge and blockparam), or the source instruction cannot be
101 /// allowed to sink to the current location due to side-effects.
102 None,
103}
104
105impl InputSourceInst {
106 /// Get the instruction and output index for this source, whether
107 /// we are its single or one of many users.
108 pub fn as_inst(&self) -> Option<(Inst, usize)> {
109 match self {
110 &InputSourceInst::UniqueUse(inst, output_idx)
111 | &InputSourceInst::Use(inst, output_idx) => Some((inst, output_idx)),
112 &InputSourceInst::None => None,
113 }
114 }
115}
116
117/// A machine backend.
118pub trait LowerBackend {
119 /// The machine instruction type.
120 type MInst: VCodeInst;
121
122 /// Lower a single instruction.
123 ///
124 /// For a branch, this function should not generate the actual branch
125 /// instruction. However, it must force any values it needs for the branch
126 /// edge (block-param actuals) into registers, because the actual branch
127 /// generation (`lower_branch()`) happens *after* any possible merged
128 /// out-edge.
129 ///
130 /// Returns `None` if no lowering for the instruction was found.
131 fn lower(&self, ctx: &mut Lower<Self::MInst>, inst: Inst) -> Option<InstOutput>;
132
133 /// Lower a block-terminating group of branches (which together can be seen
134 /// as one N-way branch), given a vcode MachLabel for each target.
135 ///
136 /// Returns `None` if no lowering for the branch was found.
137 fn lower_branch(
138 &self,
139 ctx: &mut Lower<Self::MInst>,
140 inst: Inst,
141 targets: &[MachLabel],
142 ) -> Option<()>;
143
144 /// A bit of a hack: give a fixed register that always holds the result of a
145 /// `get_pinned_reg` instruction, if known. This allows elision of moves
146 /// into the associated vreg, instead using the real reg directly.
147 fn maybe_pinned_reg(&self) -> Option<Reg> {
148 None
149 }
150
151 /// The type of state carried between `check_fact` invocations.
152 type FactFlowState: Default + Clone + Debug;
153
154 /// Check any facts about an instruction, given VCode with facts
155 /// on VRegs. Takes mutable `VCode` so that it can propagate some
156 /// kinds of facts automatically.
157 fn check_fact(
158 &self,
159 _ctx: &FactContext<'_>,
160 _vcode: &mut VCode<Self::MInst>,
161 _inst: InsnIndex,
162 _state: &mut Self::FactFlowState,
163 ) -> PccResult<()> {
164 Err(PccError::UnimplementedBackend)
165 }
166}
167
168/// Machine-independent lowering driver / machine-instruction container. Maintains a correspondence
169/// from original Inst to MachInsts.
170pub struct Lower<'func, I: VCodeInst> {
171 /// The function to lower.
172 f: &'func Function,
173
174 /// Lowered machine instructions.
175 vcode: VCodeBuilder<I>,
176
177 /// VReg allocation context, given to the vcode field at build time to finalize the vcode.
178 vregs: VRegAllocator<I>,
179
180 /// Mapping from `Value` (SSA value in IR) to virtual register.
181 value_regs: SecondaryMap<Value, ValueRegs<Reg>>,
182
183 /// sret registers, if needed.
184 sret_reg: Option<ValueRegs<Reg>>,
185
186 /// Instruction colors at block exits. From this map, we can recover all
187 /// instruction colors by scanning backward from the block end and
188 /// decrementing on any color-changing (side-effecting) instruction.
189 block_end_colors: SecondaryMap<Block, InstColor>,
190
191 /// Instruction colors at side-effecting ops. This is the *entry* color,
192 /// i.e., the version of global state that exists before an instruction
193 /// executes. For each side-effecting instruction, the *exit* color is its
194 /// entry color plus one.
195 side_effect_inst_entry_colors: FxHashMap<Inst, InstColor>,
196
197 /// Current color as we scan during lowering. While we are lowering an
198 /// instruction, this is equal to the color *at entry to* the instruction.
199 cur_scan_entry_color: Option<InstColor>,
200
201 /// Current instruction as we scan during lowering.
202 cur_inst: Option<Inst>,
203
204 /// Instruction constant values, if known.
205 inst_constants: FxHashMap<Inst, u64>,
206
207 /// Use-counts per SSA value, as counted in the input IR. These
208 /// are "coarsened", in the abstract-interpretation sense: we only
209 /// care about "0, 1, many" states, as this is all we need and
210 /// this lets us do an efficient fixpoint analysis.
211 ///
212 /// See doc comment on `ValueUseState` for more details.
213 value_ir_uses: SecondaryMap<Value, ValueUseState>,
214
215 /// Actual uses of each SSA value so far, incremented while lowering.
216 value_lowered_uses: SecondaryMap<Value, u32>,
217
218 /// Effectful instructions that have been sunk; they are not codegen'd at
219 /// their original locations.
220 inst_sunk: FxHashSet<Inst>,
221
222 /// Instructions collected for the CLIF inst in progress, in forward order.
223 ir_insts: Vec<I>,
224
225 /// The register to use for GetPinnedReg, if any, on this architecture.
226 pinned_reg: Option<Reg>,
227
228 /// Compilation flags.
229 flags: Flags,
230}
231
232/// How is a value used in the IR?
233///
234/// This can be seen as a coarsening of an integer count. We only need
235/// distinct states for zero, one, or many.
236///
237/// This analysis deserves further explanation. The basic idea is that
238/// we want to allow instruction lowering to know whether a value that
239/// an instruction references is *only* referenced by that one use, or
240/// by others as well. This is necessary to know when we might want to
241/// move a side-effect: we cannot, for example, duplicate a load, so
242/// we cannot let instruction lowering match a load as part of a
243/// subpattern and potentially incorporate it.
244///
245/// Note that a lot of subtlety comes into play once we have
246/// *indirect* uses. The classical example of this in our development
247/// history was the x86 compare instruction, which is incorporated
248/// into flags users (e.g. `selectif`, `trueif`, branches) and can
249/// subsequently incorporate loads, or at least we would like it
250/// to. However, danger awaits: the compare might be the only user of
251/// a load, so we might think we can just move the load (and nothing
252/// is duplicated -- success!), except that the compare itself is
253/// codegen'd in multiple places, where it is incorporated as a
254/// subpattern itself.
255///
256/// So we really want a notion of "unique all the way along the
257/// matching path". Rust's `&T` and `&mut T` offer a partial analogy
258/// to the semantics that we want here: we want to know when we've
259/// matched a unique use of an instruction, and that instruction's
260/// unique use of another instruction, etc, just as `&mut T` can only
261/// be obtained by going through a chain of `&mut T`. If one has a
262/// `&T` to a struct containing `&mut T` (one of several uses of an
263/// instruction that itself has a unique use of an instruction), one
264/// can only get a `&T` (one can only get a "I am one of several users
265/// of this instruction" result).
266///
267/// We could track these paths, either dynamically as one "looks up the operand
268/// tree" or precomputed. But the former requires state and means that the
269/// `Lower` API carries that state implicitly, which we'd like to avoid if we
270/// can. And the latter implies O(n^2) storage: it is an all-pairs property (is
271/// inst `i` unique from the point of view of `j`).
272///
273/// To make matters even a little more complex still, a value that is
274/// not uniquely used when initially viewing the IR can *become*
275/// uniquely used, at least as a root allowing further unique uses of
276/// e.g. loads to merge, if no other instruction actually merges
277/// it. To be more concrete, if we have `v1 := load; v2 := op v1; v3
278/// := op v2; v4 := op v2` then `v2` is non-uniquely used, so from the
279/// point of view of lowering `v4` or `v3`, we cannot merge the load
280/// at `v1`. But if we decide just to use the assigned register for
281/// `v2` at both `v3` and `v4`, then we only actually codegen `v2`
282/// once, so it *is* a unique root at that point and we *can* merge
283/// the load.
284///
285/// Note also that the color scheme is not sufficient to give us this
286/// information, for various reasons: reasoning about side-effects
287/// does not tell us about potential duplication of uses through pure
288/// ops.
289///
290/// To keep things simple and avoid error-prone lowering APIs that
291/// would extract more information about whether instruction merging
292/// happens or not (we don't have that info now, and it would be
293/// difficult to refactor to get it and make that refactor 100%
294/// correct), we give up on the above "can become unique if not
295/// actually merged" point. Instead, we compute a
296/// transitive-uniqueness. That is what this enum represents.
297///
298/// There is one final caveat as well to the result of this analysis. Notably,
299/// we define some instructions to be "root" instructions, which means that we
300/// assume they will always be codegen'd at the root of a matching tree, and not
301/// matched. (This comes with the caveat that we actually enforce this property
302/// by making them "opaque" to subtree matching in
303/// `get_value_as_source_or_const`). Because they will always be codegen'd once,
304/// they in some sense "reset" multiplicity: these root instructions can be used
305/// many times, but because their result(s) are only computed once, they only
306/// use their inputs once.
307///
308/// We currently define all multi-result instructions to be "root" instructions,
309/// because it is too complex to reason about matching through them, and they
310/// cause too-coarse-grained approximation of multiplicity otherwise: the
311/// analysis would have to assume (as it used to!) that they are always
312/// multiply-used, simply because they have multiple outputs even if those
313/// outputs are used only once.
314///
315/// In the future we could define other instructions to be "root" instructions
316/// as well, if we make the corresponding change to get_value_as_source_or_const
317/// as well.
318///
319/// To define `ValueUseState` more plainly: a value is `Unused` if no references
320/// exist to it; `Once` if only one other op refers to it, *and* that other op
321/// is `Unused` or `Once`; and `Multiple` otherwise. In other words, `Multiple`
322/// is contagious (except through root instructions): even if an op's result
323/// value is directly used only once in the CLIF, that value is `Multiple` if
324/// the op that uses it is itself used multiple times (hence could be codegen'd
325/// multiple times). In brief, this analysis tells us whether, if every op
326/// merged all of its operand tree, a given op could be codegen'd in more than
327/// one place.
328///
329/// To compute this, we first consider direct uses. At this point
330/// `Unused` answers are correct, `Multiple` answers are correct, but
331/// some `Once`s may change to `Multiple`s. Then we propagate
332/// `Multiple` transitively using a workqueue/fixpoint algorithm.
333#[derive(Clone, Copy, Debug, PartialEq, Eq)]
334enum ValueUseState {
335 /// Not used at all.
336 Unused,
337 /// Used exactly once.
338 Once,
339 /// Used multiple times.
340 Multiple,
341}
342
343impl ValueUseState {
344 /// Add one use.
345 fn inc(&mut self) {
346 let new = match self {
347 Self::Unused => Self::Once,
348 Self::Once | Self::Multiple => Self::Multiple,
349 };
350 *self = new;
351 }
352}
353
354/// Notion of "relocation distance". This gives an estimate of how far away a symbol will be from a
355/// reference.
356#[derive(Clone, Copy, Debug, PartialEq, Eq)]
357pub enum RelocDistance {
358 /// Target of relocation is "nearby". The threshold for this is fuzzy but should be interpreted
359 /// as approximately "within the compiled output of one module"; e.g., within AArch64's +/-
360 /// 128MB offset. If unsure, use `Far` instead.
361 Near,
362 /// Target of relocation could be anywhere in the address space.
363 Far,
364}
365
366impl<'func, I: VCodeInst> Lower<'func, I> {
367 /// Prepare a new lowering context for the given IR function.
368 pub fn new(
369 f: &'func Function,
370 abi: Callee<I::ABIMachineSpec>,
371 emit_info: I::Info,
372 block_order: BlockLoweringOrder,
373 sigs: SigSet,
374 flags: Flags,
375 ) -> CodegenResult<Self> {
376 let constants = VCodeConstants::with_capacity(f.dfg.constants.len());
377 let vcode = VCodeBuilder::new(
378 sigs,
379 abi,
380 emit_info,
381 block_order,
382 constants,
383 VCodeBuildDirection::Backward,
384 );
385
386 // We usually need two VRegs per instruction result, plus extras for
387 // various temporaries, but two per Value is a good starting point.
388 let mut vregs = VRegAllocator::with_capacity(f.dfg.num_values() * 2);
389
390 let mut value_regs = SecondaryMap::with_default(ValueRegs::invalid());
391
392 // Assign a vreg to each block param and each inst result.
393 for bb in f.layout.blocks() {
394 for ¶m in f.dfg.block_params(bb) {
395 let ty = f.dfg.value_type(param);
396 if value_regs[param].is_invalid() {
397 let regs = vregs.alloc_with_maybe_fact(ty, f.dfg.facts[param].clone())?;
398 value_regs[param] = regs;
399 trace!("bb {} param {}: regs {:?}", bb, param, regs);
400 }
401 }
402 for inst in f.layout.block_insts(bb) {
403 for &result in f.dfg.inst_results(inst) {
404 let ty = f.dfg.value_type(result);
405 if value_regs[result].is_invalid() && !ty.is_invalid() {
406 let regs = vregs.alloc_with_maybe_fact(ty, f.dfg.facts[result].clone())?;
407 value_regs[result] = regs;
408 trace!(
409 "bb {} inst {} ({:?}): result {} regs {:?}",
410 bb,
411 inst,
412 f.dfg.insts[inst],
413 result,
414 regs,
415 );
416 }
417 }
418 }
419 }
420
421 // Find the sret register, if it's used.
422 let mut sret_param = None;
423 for ret in vcode.abi().signature().returns.iter() {
424 if ret.purpose == ArgumentPurpose::StructReturn {
425 let entry_bb = f.stencil.layout.entry_block().unwrap();
426 for (¶m, sig_param) in f
427 .dfg
428 .block_params(entry_bb)
429 .iter()
430 .zip(vcode.abi().signature().params.iter())
431 {
432 if sig_param.purpose == ArgumentPurpose::StructReturn {
433 assert!(sret_param.is_none());
434 sret_param = Some(param);
435 }
436 }
437
438 assert!(sret_param.is_some());
439 }
440 }
441
442 let sret_reg = sret_param.map(|param| {
443 let regs = value_regs[param];
444 assert!(regs.len() == 1);
445 regs
446 });
447
448 // Compute instruction colors, find constant instructions, and find instructions with
449 // side-effects, in one combined pass.
450 let mut cur_color = 0;
451 let mut block_end_colors = SecondaryMap::with_default(InstColor::new(0));
452 let mut side_effect_inst_entry_colors = FxHashMap::default();
453 let mut inst_constants = FxHashMap::default();
454 for bb in f.layout.blocks() {
455 cur_color += 1;
456 for inst in f.layout.block_insts(bb) {
457 let side_effect = has_lowering_side_effect(f, inst);
458
459 trace!("bb {} inst {} has color {}", bb, inst, cur_color);
460 if side_effect {
461 side_effect_inst_entry_colors.insert(inst, InstColor::new(cur_color));
462 trace!(" -> side-effecting; incrementing color for next inst");
463 cur_color += 1;
464 }
465
466 // Determine if this is a constant; if so, add to the table.
467 if let Some(c) = is_constant_64bit(f, inst) {
468 trace!(" -> constant: {}", c);
469 inst_constants.insert(inst, c);
470 }
471 }
472
473 block_end_colors[bb] = InstColor::new(cur_color);
474 }
475
476 let value_ir_uses = compute_use_states(f, sret_param);
477
478 Ok(Lower {
479 f,
480 vcode,
481 vregs,
482 value_regs,
483 sret_reg,
484 block_end_colors,
485 side_effect_inst_entry_colors,
486 inst_constants,
487 value_ir_uses,
488 value_lowered_uses: SecondaryMap::default(),
489 inst_sunk: FxHashSet::default(),
490 cur_scan_entry_color: None,
491 cur_inst: None,
492 ir_insts: vec![],
493 pinned_reg: None,
494 flags,
495 })
496 }
497
498 pub fn sigs(&self) -> &SigSet {
499 self.vcode.sigs()
500 }
501
502 pub fn sigs_mut(&mut self) -> &mut SigSet {
503 self.vcode.sigs_mut()
504 }
505
506 fn gen_arg_setup(&mut self) {
507 if let Some(entry_bb) = self.f.layout.entry_block() {
508 trace!(
509 "gen_arg_setup: entry BB {} args are:\n{:?}",
510 entry_bb,
511 self.f.dfg.block_params(entry_bb)
512 );
513
514 for (i, param) in self.f.dfg.block_params(entry_bb).iter().enumerate() {
515 if self.value_ir_uses[*param] == ValueUseState::Unused {
516 continue;
517 }
518 let regs = writable_value_regs(self.value_regs[*param]);
519 for insn in self
520 .vcode
521 .vcode
522 .abi
523 .gen_copy_arg_to_regs(&self.vcode.vcode.sigs, i, regs, &mut self.vregs)
524 .into_iter()
525 {
526 self.emit(insn);
527 }
528 }
529 if let Some(insn) = self
530 .vcode
531 .vcode
532 .abi
533 .gen_retval_area_setup(&self.vcode.vcode.sigs, &mut self.vregs)
534 {
535 self.emit(insn);
536 }
537
538 // The `args` instruction below must come first. Finish
539 // the current "IR inst" (with a default source location,
540 // as for other special instructions inserted during
541 // lowering) and continue the scan backward.
542 self.finish_ir_inst(Default::default());
543
544 if let Some(insn) = self.vcode.vcode.abi.take_args() {
545 self.emit(insn);
546 }
547 }
548 }
549
550 /// Generate the return instruction.
551 pub fn gen_return(&mut self, rets: Vec<ValueRegs<Reg>>) {
552 let mut out_rets = vec![];
553
554 let mut rets = rets.into_iter();
555 for (i, ret) in self
556 .abi()
557 .signature()
558 .returns
559 .clone()
560 .into_iter()
561 .enumerate()
562 {
563 let regs = if ret.purpose == ArgumentPurpose::StructReturn {
564 self.sret_reg.unwrap()
565 } else {
566 rets.next().unwrap()
567 };
568
569 let (regs, insns) = self.vcode.abi().gen_copy_regs_to_retval(
570 self.vcode.sigs(),
571 i,
572 regs,
573 &mut self.vregs,
574 );
575 out_rets.extend(regs);
576 for insn in insns {
577 self.emit(insn);
578 }
579 }
580
581 // Hack: generate a virtual instruction that uses vmctx in
582 // order to keep it alive for the duration of the function,
583 // for the benefit of debuginfo.
584 if self.f.dfg.values_labels.is_some() {
585 if let Some(vmctx_val) = self.f.special_param(ArgumentPurpose::VMContext) {
586 if self.value_ir_uses[vmctx_val] != ValueUseState::Unused {
587 let vmctx_reg = self.value_regs[vmctx_val].only_reg().unwrap();
588 self.emit(I::gen_dummy_use(vmctx_reg));
589 }
590 }
591 }
592
593 let inst = self.abi().gen_rets(out_rets);
594 self.emit(inst);
595 }
596
597 /// Has this instruction been sunk to a use-site (i.e., away from its
598 /// original location)?
599 fn is_inst_sunk(&self, inst: Inst) -> bool {
600 self.inst_sunk.contains(&inst)
601 }
602
603 // Is any result of this instruction needed?
604 fn is_any_inst_result_needed(&self, inst: Inst) -> bool {
605 self.f
606 .dfg
607 .inst_results(inst)
608 .iter()
609 .any(|&result| self.value_lowered_uses[result] > 0)
610 }
611
612 fn lower_clif_block<B: LowerBackend<MInst = I>>(
613 &mut self,
614 backend: &B,
615 block: Block,
616 ctrl_plane: &mut ControlPlane,
617 ) -> CodegenResult<()> {
618 self.cur_scan_entry_color = Some(self.block_end_colors[block]);
619 // Lowering loop:
620 // - For each non-branch instruction, in reverse order:
621 // - If side-effecting (load, store, branch/call/return,
622 // possible trap), or if used outside of this block, or if
623 // demanded by another inst, then lower.
624 //
625 // That's it! Lowering of side-effecting ops will force all *needed*
626 // (live) non-side-effecting ops to be lowered at the right places, via
627 // the `use_input_reg()` callback on the `Lower` (that's us). That's
628 // because `use_input_reg()` sets the eager/demand bit for any insts
629 // whose result registers are used.
630 //
631 // We set the VCodeBuilder to "backward" mode, so we emit
632 // blocks in reverse order wrt the BlockIndex sequence, and
633 // emit instructions in reverse order within blocks. Because
634 // the machine backend calls `ctx.emit()` in forward order, we
635 // collect per-IR-inst lowered instructions in `ir_insts`,
636 // then reverse these and append to the VCode at the end of
637 // each IR instruction.
638 for inst in self.f.layout.block_insts(block).rev() {
639 let data = &self.f.dfg.insts[inst];
640 let has_side_effect = has_lowering_side_effect(self.f, inst);
641 // If inst has been sunk to another location, skip it.
642 if self.is_inst_sunk(inst) {
643 continue;
644 }
645 // Are any outputs used at least once?
646 let value_needed = self.is_any_inst_result_needed(inst);
647 trace!(
648 "lower_clif_block: block {} inst {} ({:?}) is_branch {} side_effect {} value_needed {}",
649 block,
650 inst,
651 data,
652 data.opcode().is_branch(),
653 has_side_effect,
654 value_needed,
655 );
656
657 // Update scan state to color prior to this inst (as we are scanning
658 // backward).
659 self.cur_inst = Some(inst);
660 if has_side_effect {
661 let entry_color = *self
662 .side_effect_inst_entry_colors
663 .get(&inst)
664 .expect("every side-effecting inst should have a color-map entry");
665 self.cur_scan_entry_color = Some(entry_color);
666 }
667
668 // Skip lowering branches; these are handled separately
669 // (see `lower_clif_branches()` below).
670 if self.f.dfg.insts[inst].opcode().is_branch() {
671 continue;
672 }
673
674 // Normal instruction: codegen if the instruction is side-effecting
675 // or any of its outputs is used.
676 if has_side_effect || value_needed {
677 trace!("lowering: inst {}: {}", inst, self.f.dfg.display_inst(inst));
678 let temp_regs = backend.lower(self, inst).unwrap_or_else(|| {
679 let ty = if self.num_outputs(inst) > 0 {
680 Some(self.output_ty(inst, 0))
681 } else {
682 None
683 };
684 panic!(
685 "should be implemented in ISLE: inst = `{}`, type = `{:?}`",
686 self.f.dfg.display_inst(inst),
687 ty
688 )
689 });
690
691 // The ISLE generated code emits its own registers to define the
692 // instruction's lowered values in. However, other instructions
693 // that use this SSA value will be lowered assuming that the value
694 // is generated into a pre-assigned, different, register.
695 //
696 // To connect the two, we set up "aliases" in the VCodeBuilder
697 // that apply when it is building the Operand table for the
698 // regalloc to use. These aliases effectively rewrite any use of
699 // the pre-assigned register to the register that was returned by
700 // the ISLE lowering logic.
701 let results = self.f.dfg.inst_results(inst);
702 debug_assert_eq!(temp_regs.len(), results.len());
703 for (regs, &result) in temp_regs.iter().zip(results) {
704 let dsts = self.value_regs[result];
705 debug_assert_eq!(regs.len(), dsts.len());
706 for (&dst, &temp) in dsts.regs().iter().zip(regs.regs()) {
707 trace!("set vreg alias: {result:?} = {dst:?}, lowering = {temp:?}");
708 self.vregs.set_vreg_alias(dst, temp);
709 }
710 }
711 }
712
713 let start = self.vcode.vcode.num_insts();
714 let loc = self.srcloc(inst);
715 self.finish_ir_inst(loc);
716
717 // If the instruction had a user stack map, forward it from the CLIF
718 // to the vcode.
719 if let Some(entries) = self.f.dfg.user_stack_map_entries(inst) {
720 let end = self.vcode.vcode.num_insts();
721 debug_assert!(end > start);
722 debug_assert_eq!(
723 (start..end)
724 .filter(|i| self.vcode.vcode[InsnIndex::new(*i)].is_safepoint())
725 .count(),
726 1
727 );
728 for i in start..end {
729 let iix = InsnIndex::new(i);
730 if self.vcode.vcode[iix].is_safepoint() {
731 trace!(
732 "Adding user stack map from clif\n\n\
733 {inst:?} `{}`\n\n\
734 to vcode\n\n\
735 {iix:?} `{}`",
736 self.f.dfg.display_inst(inst),
737 &self.vcode.vcode[iix].pretty_print_inst(&mut Default::default()),
738 );
739 self.vcode
740 .add_user_stack_map(BackwardsInsnIndex::new(iix.index()), entries);
741 break;
742 }
743 }
744 }
745
746 // maybe insert random instruction
747 if ctrl_plane.get_decision() {
748 if ctrl_plane.get_decision() {
749 let imm: u64 = ctrl_plane.get_arbitrary();
750 let reg = self.alloc_tmp(crate::ir::types::I64).regs()[0];
751 I::gen_imm_u64(imm, reg).map(|inst| self.emit(inst));
752 } else {
753 let imm: f64 = ctrl_plane.get_arbitrary();
754 let tmp = self.alloc_tmp(crate::ir::types::I64).regs()[0];
755 let reg = self.alloc_tmp(crate::ir::types::F64).regs()[0];
756 for inst in I::gen_imm_f64(imm, tmp, reg) {
757 self.emit(inst);
758 }
759 }
760 }
761
762 // Emit value-label markers if needed, to later recover
763 // debug mappings. This must happen before the instruction
764 // (so after we emit, in bottom-to-top pass).
765 self.emit_value_label_markers_for_inst(inst);
766 }
767
768 // Add the block params to this block.
769 self.add_block_params(block)?;
770
771 self.cur_scan_entry_color = None;
772 Ok(())
773 }
774
775 fn add_block_params(&mut self, block: Block) -> CodegenResult<()> {
776 for ¶m in self.f.dfg.block_params(block) {
777 for ® in self.value_regs[param].regs() {
778 let vreg = reg.to_virtual_reg().unwrap();
779 self.vcode.add_block_param(vreg);
780 }
781 }
782 Ok(())
783 }
784
785 fn get_value_labels<'a>(&'a self, val: Value, depth: usize) -> Option<&'a [ValueLabelStart]> {
786 if let Some(ref values_labels) = self.f.dfg.values_labels {
787 debug_assert!(self.f.dfg.value_is_real(val));
788 trace!(
789 "get_value_labels: val {} -> {:?}",
790 val,
791 values_labels.get(&val)
792 );
793 match values_labels.get(&val) {
794 Some(&ValueLabelAssignments::Starts(ref list)) => Some(&list[..]),
795 Some(&ValueLabelAssignments::Alias { value, .. }) if depth < 10 => {
796 self.get_value_labels(value, depth + 1)
797 }
798 _ => None,
799 }
800 } else {
801 None
802 }
803 }
804
805 fn emit_value_label_marks_for_value(&mut self, val: Value) {
806 let regs = self.value_regs[val];
807 if regs.len() > 1 {
808 return;
809 }
810 let reg = regs.only_reg().unwrap();
811
812 if let Some(label_starts) = self.get_value_labels(val, 0) {
813 let labels = label_starts
814 .iter()
815 .map(|&ValueLabelStart { label, .. }| label)
816 .collect::<FxHashSet<_>>();
817 for label in labels {
818 trace!(
819 "value labeling: defines val {:?} -> reg {:?} -> label {:?}",
820 val,
821 reg,
822 label,
823 );
824 self.vcode.add_value_label(reg, label);
825 }
826 }
827 }
828
829 fn emit_value_label_markers_for_inst(&mut self, inst: Inst) {
830 if self.f.dfg.values_labels.is_none() {
831 return;
832 }
833
834 trace!(
835 "value labeling: srcloc {}: inst {}",
836 self.srcloc(inst),
837 inst
838 );
839 for &val in self.f.dfg.inst_results(inst) {
840 self.emit_value_label_marks_for_value(val);
841 }
842 }
843
844 fn emit_value_label_markers_for_block_args(&mut self, block: Block) {
845 if self.f.dfg.values_labels.is_none() {
846 return;
847 }
848
849 trace!("value labeling: block {}", block);
850 for &arg in self.f.dfg.block_params(block) {
851 self.emit_value_label_marks_for_value(arg);
852 }
853 self.finish_ir_inst(Default::default());
854 }
855
856 fn finish_ir_inst(&mut self, loc: RelSourceLoc) {
857 // The VCodeBuilder builds in reverse order (and reverses at
858 // the end), but `ir_insts` is in forward order, so reverse
859 // it.
860 for inst in self.ir_insts.drain(..).rev() {
861 self.vcode.push(inst, loc);
862 }
863 }
864
865 fn finish_bb(&mut self) {
866 self.vcode.end_bb();
867 }
868
869 fn lower_clif_branches<B: LowerBackend<MInst = I>>(
870 &mut self,
871 backend: &B,
872 // Lowered block index:
873 bindex: BlockIndex,
874 // Original CLIF block:
875 block: Block,
876 branch: Inst,
877 targets: &[MachLabel],
878 ) -> CodegenResult<()> {
879 trace!(
880 "lower_clif_branches: block {} branch {:?} targets {:?}",
881 block,
882 branch,
883 targets,
884 );
885 // When considering code-motion opportunities, consider the current
886 // program point to be this branch.
887 self.cur_inst = Some(branch);
888
889 // Lower the branch in ISLE.
890 backend
891 .lower_branch(self, branch, targets)
892 .unwrap_or_else(|| {
893 panic!(
894 "should be implemented in ISLE: branch = `{}`",
895 self.f.dfg.display_inst(branch),
896 )
897 });
898 let loc = self.srcloc(branch);
899 self.finish_ir_inst(loc);
900 // Add block param outputs for current block.
901 self.lower_branch_blockparam_args(bindex);
902 Ok(())
903 }
904
905 fn lower_branch_blockparam_args(&mut self, block: BlockIndex) {
906 // TODO: why not make `block_order` public?
907 for succ_idx in 0..self.vcode.block_order().succ_indices(block).1.len() {
908 // Avoid immutable borrow by explicitly indexing.
909 let (opt_inst, succs) = self.vcode.block_order().succ_indices(block);
910 let inst = opt_inst.expect("lower_branch_blockparam_args called on a critical edge!");
911 let succ = succs[succ_idx];
912
913 // The use of `succ_idx` to index `branch_destination` is valid on the assumption that
914 // the traversal order defined in `visit_block_succs` mirrors the order returned by
915 // `branch_destination`. If that assumption is violated, the branch targets returned
916 // here will not match the clif.
917 let branches = self.f.dfg.insts[inst].branch_destination(&self.f.dfg.jump_tables);
918 let branch_args = branches[succ_idx].args_slice(&self.f.dfg.value_lists);
919
920 let mut branch_arg_vregs: SmallVec<[Reg; 16]> = smallvec![];
921 for &arg in branch_args {
922 debug_assert!(self.f.dfg.value_is_real(arg));
923 let regs = self.put_value_in_regs(arg);
924 branch_arg_vregs.extend_from_slice(regs.regs());
925 }
926 self.vcode.add_succ(succ, &branch_arg_vregs[..]);
927 }
928 }
929
930 fn collect_branches_and_targets(
931 &self,
932 bindex: BlockIndex,
933 _bb: Block,
934 targets: &mut SmallVec<[MachLabel; 2]>,
935 ) -> Option<Inst> {
936 targets.clear();
937 let (opt_inst, succs) = self.vcode.block_order().succ_indices(bindex);
938 targets.extend(succs.iter().map(|succ| MachLabel::from_block(*succ)));
939 opt_inst
940 }
941
942 /// Lower the function.
943 pub fn lower<B: LowerBackend<MInst = I>>(
944 mut self,
945 backend: &B,
946 ctrl_plane: &mut ControlPlane,
947 ) -> CodegenResult<VCode<I>> {
948 trace!("about to lower function: {:?}", self.f);
949
950 self.vcode.init_retval_area(&mut self.vregs)?;
951
952 // Get the pinned reg here (we only parameterize this function on `B`,
953 // not the whole `Lower` impl).
954 self.pinned_reg = backend.maybe_pinned_reg();
955
956 self.vcode.set_entry(BlockIndex::new(0));
957
958 // Reused vectors for branch lowering.
959 let mut targets: SmallVec<[MachLabel; 2]> = SmallVec::new();
960
961 // get a copy of the lowered order; we hold this separately because we
962 // need a mut ref to the vcode to mutate it below.
963 let lowered_order: SmallVec<[LoweredBlock; 64]> = self
964 .vcode
965 .block_order()
966 .lowered_order()
967 .iter()
968 .cloned()
969 .collect();
970
971 // Main lowering loop over lowered blocks.
972 for (bindex, lb) in lowered_order.iter().enumerate().rev() {
973 let bindex = BlockIndex::new(bindex);
974
975 // Lower the block body in reverse order (see comment in
976 // `lower_clif_block()` for rationale).
977
978 // End branches.
979 if let Some(bb) = lb.orig_block() {
980 if let Some(branch) = self.collect_branches_and_targets(bindex, bb, &mut targets) {
981 self.lower_clif_branches(backend, bindex, bb, branch, &targets)?;
982 self.finish_ir_inst(self.srcloc(branch));
983 }
984 } else {
985 // If no orig block, this must be a pure edge block;
986 // get the successor and emit a jump. Add block params
987 // according to the one successor, and pass them
988 // through; note that the successor must have an
989 // original block.
990 let (_, succs) = self.vcode.block_order().succ_indices(bindex);
991 let succ = succs[0];
992
993 let orig_succ = lowered_order[succ.index()];
994 let orig_succ = orig_succ
995 .orig_block()
996 .expect("Edge block succ must be body block");
997
998 let mut branch_arg_vregs: SmallVec<[Reg; 16]> = smallvec![];
999 for ty in self.f.dfg.block_param_types(orig_succ) {
1000 let regs = self.vregs.alloc(ty)?;
1001 for ® in regs.regs() {
1002 branch_arg_vregs.push(reg);
1003 let vreg = reg.to_virtual_reg().unwrap();
1004 self.vcode.add_block_param(vreg);
1005 }
1006 }
1007 self.vcode.add_succ(succ, &branch_arg_vregs[..]);
1008
1009 self.emit(I::gen_jump(MachLabel::from_block(succ)));
1010 self.finish_ir_inst(Default::default());
1011 }
1012
1013 // Original block body.
1014 if let Some(bb) = lb.orig_block() {
1015 self.lower_clif_block(backend, bb, ctrl_plane)?;
1016 self.emit_value_label_markers_for_block_args(bb);
1017 }
1018
1019 if bindex.index() == 0 {
1020 // Set up the function with arg vreg inits.
1021 self.gen_arg_setup();
1022 self.finish_ir_inst(Default::default());
1023 }
1024
1025 self.finish_bb();
1026
1027 // Check for any deferred vreg-temp allocation errors, and
1028 // bubble one up at this time if it exists.
1029 if let Some(e) = self.vregs.take_deferred_error() {
1030 return Err(e);
1031 }
1032 }
1033
1034 // Now that we've emitted all instructions into the
1035 // VCodeBuilder, let's build the VCode.
1036 trace!(
1037 "built vcode:\n{:?}Backwards {:?}",
1038 &self.vregs,
1039 &self.vcode.vcode
1040 );
1041 let vcode = self.vcode.build(self.vregs);
1042
1043 Ok(vcode)
1044 }
1045}
1046
1047/// Pre-analysis: compute `value_ir_uses`. See comment on
1048/// `ValueUseState` for a description of what this analysis
1049/// computes.
1050fn compute_use_states(
1051 f: &Function,
1052 sret_param: Option<Value>,
1053) -> SecondaryMap<Value, ValueUseState> {
1054 // We perform the analysis without recursion, so we don't
1055 // overflow the stack on long chains of ops in the input.
1056 //
1057 // This is sort of a hybrid of a "shallow use-count" pass and
1058 // a DFS. We iterate over all instructions and mark their args
1059 // as used. However when we increment a use-count to
1060 // "Multiple" we push its args onto the stack and do a DFS,
1061 // immediately marking the whole dependency tree as
1062 // Multiple. Doing both (shallow use-counting over all insts,
1063 // and deep Multiple propagation) lets us trim both
1064 // traversals, stopping recursion when a node is already at
1065 // the appropriate state.
1066 //
1067 // In particular, note that the *coarsening* into {Unused,
1068 // Once, Multiple} is part of what makes this pass more
1069 // efficient than a full indirect-use-counting pass.
1070
1071 let mut value_ir_uses = SecondaryMap::with_default(ValueUseState::Unused);
1072
1073 if let Some(sret_param) = sret_param {
1074 // There's an implicit use of the struct-return parameter in each
1075 // copy of the function epilogue, which we count here.
1076 value_ir_uses[sret_param] = ValueUseState::Multiple;
1077 }
1078
1079 // Stack of iterators over Values as we do DFS to mark
1080 // Multiple-state subtrees. The iterator type is whatever is
1081 // returned by `uses` below.
1082 let mut stack: SmallVec<[_; 16]> = smallvec![];
1083
1084 // Find the args for the inst corresponding to the given value.
1085 //
1086 // Note that "root" instructions are skipped here. This means that multiple
1087 // uses of any result of a multi-result instruction are not considered
1088 // multiple uses of the operands of a multi-result instruction. This
1089 // requires tight coupling with `get_value_as_source_or_const` above which
1090 // is the consumer of the map that this function is producing.
1091 let uses = |value| {
1092 trace!(" -> pushing args for {} onto stack", value);
1093 if let ValueDef::Result(src_inst, _) = f.dfg.value_def(value) {
1094 if is_value_use_root(f, src_inst) {
1095 None
1096 } else {
1097 Some(f.dfg.inst_values(src_inst))
1098 }
1099 } else {
1100 None
1101 }
1102 };
1103
1104 // Do a DFS through `value_ir_uses` to mark a subtree as
1105 // Multiple.
1106 for inst in f
1107 .layout
1108 .blocks()
1109 .flat_map(|block| f.layout.block_insts(block))
1110 {
1111 // Iterate over all values used by all instructions, noting an
1112 // additional use on each operand.
1113 for arg in f.dfg.inst_values(inst) {
1114 debug_assert!(f.dfg.value_is_real(arg));
1115 let old = value_ir_uses[arg];
1116 value_ir_uses[arg].inc();
1117 let new = value_ir_uses[arg];
1118 trace!("arg {} used, old state {:?}, new {:?}", arg, old, new);
1119
1120 // On transition to Multiple, do DFS.
1121 if old == ValueUseState::Multiple || new != ValueUseState::Multiple {
1122 continue;
1123 }
1124 if let Some(iter) = uses(arg) {
1125 stack.push(iter);
1126 }
1127 while let Some(iter) = stack.last_mut() {
1128 if let Some(value) = iter.next() {
1129 debug_assert!(f.dfg.value_is_real(value));
1130 trace!(" -> DFS reaches {}", value);
1131 if value_ir_uses[value] == ValueUseState::Multiple {
1132 // Truncate DFS here: no need to go further,
1133 // as whole subtree must already be Multiple.
1134 // With debug asserts, check one level of
1135 // that invariant at least.
1136 debug_assert!(uses(value).into_iter().flatten().all(|arg| {
1137 debug_assert!(f.dfg.value_is_real(arg));
1138 value_ir_uses[arg] == ValueUseState::Multiple
1139 }));
1140 continue;
1141 }
1142 value_ir_uses[value] = ValueUseState::Multiple;
1143 trace!(" -> became Multiple");
1144 if let Some(iter) = uses(value) {
1145 stack.push(iter);
1146 }
1147 } else {
1148 // Empty iterator, discard.
1149 stack.pop();
1150 }
1151 }
1152 }
1153 }
1154
1155 value_ir_uses
1156}
1157
1158/// Definition of a "root" instruction for the calculation of `ValueUseState`.
1159///
1160/// This function calculates whether `inst` is considered a "root" for value-use
1161/// information. This concept is used to forcibly prevent looking-through the
1162/// instruction during `get_value_as_source_or_const` as it additionally
1163/// prevents propagating `Multiple`-used results of the `inst` here to the
1164/// operands of the instruction.
1165///
1166/// Currently this is defined as multi-result instructions. That means that
1167/// lowerings are never allowed to look through a multi-result instruction to
1168/// generate patterns. Note that this isn't possible in ISLE today anyway so
1169/// this isn't currently much of a loss.
1170///
1171/// The main purpose of this function is to prevent the operands of a
1172/// multi-result instruction from being forcibly considered `Multiple`-used
1173/// regardless of circumstances.
1174fn is_value_use_root(f: &Function, inst: Inst) -> bool {
1175 f.dfg.inst_results(inst).len() > 1
1176}
1177
1178/// Function-level queries.
1179impl<'func, I: VCodeInst> Lower<'func, I> {
1180 pub fn dfg(&self) -> &DataFlowGraph {
1181 &self.f.dfg
1182 }
1183
1184 /// Get the `Callee`.
1185 pub fn abi(&self) -> &Callee<I::ABIMachineSpec> {
1186 self.vcode.abi()
1187 }
1188
1189 /// Get the `Callee`.
1190 pub fn abi_mut(&mut self) -> &mut Callee<I::ABIMachineSpec> {
1191 self.vcode.abi_mut()
1192 }
1193}
1194
1195/// Instruction input/output queries.
1196impl<'func, I: VCodeInst> Lower<'func, I> {
1197 /// Get the instdata for a given IR instruction.
1198 pub fn data(&self, ir_inst: Inst) -> &InstructionData {
1199 &self.f.dfg.insts[ir_inst]
1200 }
1201
1202 /// Likewise, but starting with a GlobalValue identifier.
1203 pub fn symbol_value_data<'b>(
1204 &'b self,
1205 global_value: GlobalValue,
1206 ) -> Option<(&'b ExternalName, RelocDistance, i64)> {
1207 let gvdata = &self.f.global_values[global_value];
1208 match gvdata {
1209 &GlobalValueData::Symbol {
1210 ref name,
1211 ref offset,
1212 colocated,
1213 ..
1214 } => {
1215 let offset = offset.bits();
1216 let dist = if colocated {
1217 RelocDistance::Near
1218 } else {
1219 RelocDistance::Far
1220 };
1221 Some((name, dist, offset))
1222 }
1223 _ => None,
1224 }
1225 }
1226
1227 /// Returns the memory flags of a given memory access.
1228 pub fn memflags(&self, ir_inst: Inst) -> Option<MemFlags> {
1229 match &self.f.dfg.insts[ir_inst] {
1230 &InstructionData::AtomicCas { flags, .. } => Some(flags),
1231 &InstructionData::AtomicRmw { flags, .. } => Some(flags),
1232 &InstructionData::Load { flags, .. }
1233 | &InstructionData::LoadNoOffset { flags, .. }
1234 | &InstructionData::Store { flags, .. } => Some(flags),
1235 &InstructionData::StoreNoOffset { flags, .. } => Some(flags),
1236 _ => None,
1237 }
1238 }
1239
1240 /// Get the source location for a given instruction.
1241 pub fn srcloc(&self, ir_inst: Inst) -> RelSourceLoc {
1242 self.f.rel_srclocs()[ir_inst]
1243 }
1244
1245 /// Get the number of inputs to the given IR instruction. This is a count only of the Value
1246 /// arguments to the instruction: block arguments will not be included in this count.
1247 pub fn num_inputs(&self, ir_inst: Inst) -> usize {
1248 self.f.dfg.inst_args(ir_inst).len()
1249 }
1250
1251 /// Get the number of outputs to the given IR instruction.
1252 pub fn num_outputs(&self, ir_inst: Inst) -> usize {
1253 self.f.dfg.inst_results(ir_inst).len()
1254 }
1255
1256 /// Get the type for an instruction's input.
1257 pub fn input_ty(&self, ir_inst: Inst, idx: usize) -> Type {
1258 self.value_ty(self.input_as_value(ir_inst, idx))
1259 }
1260
1261 /// Get the type for a value.
1262 pub fn value_ty(&self, val: Value) -> Type {
1263 self.f.dfg.value_type(val)
1264 }
1265
1266 /// Get the type for an instruction's output.
1267 pub fn output_ty(&self, ir_inst: Inst, idx: usize) -> Type {
1268 self.f.dfg.value_type(self.f.dfg.inst_results(ir_inst)[idx])
1269 }
1270
1271 /// Get the value of a constant instruction (`iconst`, etc.) as a 64-bit
1272 /// value, if possible.
1273 pub fn get_constant(&self, ir_inst: Inst) -> Option<u64> {
1274 self.inst_constants.get(&ir_inst).map(|&c| {
1275 // The upper bits must be zero, enforced during legalization and by
1276 // the CLIF verifier.
1277 debug_assert_eq!(c, {
1278 let input_size = self.output_ty(ir_inst, 0).bits() as u64;
1279 let shift = 64 - input_size;
1280 (c << shift) >> shift
1281 });
1282 c
1283 })
1284 }
1285
1286 /// Get the input as one of two options other than a direct register:
1287 ///
1288 /// - An instruction, given that it is effect-free or able to sink its
1289 /// effect to the current instruction being lowered, and given it has only
1290 /// one output, and if effect-ful, given that this is the only use;
1291 /// - A constant, if the value is a constant.
1292 ///
1293 /// The instruction input may be available in either of these forms. It may
1294 /// be available in neither form, if the conditions are not met; if so, use
1295 /// `put_input_in_regs()` instead to get it in a register.
1296 ///
1297 /// If the backend merges the effect of a side-effecting instruction, it
1298 /// must call `sink_inst()`. When this is called, it indicates that the
1299 /// effect has been sunk to the current scan location. The sunk
1300 /// instruction's result(s) must have *no* uses remaining, because it will
1301 /// not be codegen'd (it has been integrated into the current instruction).
1302 pub fn input_as_value(&self, ir_inst: Inst, idx: usize) -> Value {
1303 let val = self.f.dfg.inst_args(ir_inst)[idx];
1304 debug_assert!(self.f.dfg.value_is_real(val));
1305 val
1306 }
1307
1308 /// Resolves a particular input of an instruction to the `Value` that it is
1309 /// represented with.
1310 ///
1311 /// For more information see [`Lower::get_value_as_source_or_const`].
1312 pub fn get_input_as_source_or_const(&self, ir_inst: Inst, idx: usize) -> NonRegInput {
1313 let val = self.input_as_value(ir_inst, idx);
1314 self.get_value_as_source_or_const(val)
1315 }
1316
1317 /// Resolves a `Value` definition to the source instruction it came from
1318 /// plus whether it's a unique-use of that instruction.
1319 ///
1320 /// This function is the workhorse of pattern-matching in ISLE which enables
1321 /// combining multiple instructions together. This is used implicitly in
1322 /// patterns such as `(iadd x (iconst y))` where this function is used to
1323 /// extract the `(iconst y)` operand.
1324 ///
1325 /// At its core this function is a wrapper around
1326 /// [`DataFlowGraph::value_def`]. This function applies a filter on top of
1327 /// that, however, to determine when it is actually safe to "look through"
1328 /// the `val` definition here and view the underlying instruction. This
1329 /// protects against duplicating side effects, such as loads, for example.
1330 ///
1331 /// Internally this uses the data computed from `compute_use_states` along
1332 /// with other instruction properties to know what to return.
1333 pub fn get_value_as_source_or_const(&self, val: Value) -> NonRegInput {
1334 trace!(
1335 "get_input_for_val: val {} at cur_inst {:?} cur_scan_entry_color {:?}",
1336 val,
1337 self.cur_inst,
1338 self.cur_scan_entry_color,
1339 );
1340 let inst = match self.f.dfg.value_def(val) {
1341 // OK to merge source instruction if we have a source
1342 // instruction, and one of these two conditions hold:
1343 //
1344 // - It has no side-effects and this instruction is not a "value-use
1345 // root" instruction. Instructions which are considered "roots"
1346 // for value-use calculations do not have accurate information
1347 // known about the `ValueUseState` of their operands. This is
1348 // currently done for multi-result instructions to prevent a use
1349 // of each result from forcing all operands of the multi-result
1350 // instruction to also be `Multiple`. This in turn means that the
1351 // `ValueUseState` for operands of a "root" instruction to be a
1352 // lie if pattern matching were to look through the multi-result
1353 // instruction. As a result the "look through this instruction"
1354 // logic only succeeds if it's not a root instruction.
1355 //
1356 // - It has a side-effect, has one output value, that one
1357 // output has only one use, directly or indirectly (so
1358 // cannot be duplicated -- see comment on
1359 // `ValueUseState`), and the instruction's color is *one
1360 // less than* the current scan color.
1361 //
1362 // This latter set of conditions is testing whether a
1363 // side-effecting instruction can sink to the current scan
1364 // location; this is possible if the in-color of this inst is
1365 // equal to the out-color of the producing inst, so no other
1366 // side-effecting ops occur between them (which will only be true
1367 // if they are in the same BB, because color increments at each BB
1368 // start).
1369 //
1370 // If it is actually sunk, then in `merge_inst()`, we update the
1371 // scan color so that as we scan over the range past which the
1372 // instruction was sunk, we allow other instructions (that came
1373 // prior to the sunk instruction) to sink.
1374 ValueDef::Result(src_inst, result_idx) => {
1375 let src_side_effect = has_lowering_side_effect(self.f, src_inst);
1376 trace!(" -> src inst {}", src_inst);
1377 trace!(" -> has lowering side effect: {}", src_side_effect);
1378 if is_value_use_root(self.f, src_inst) {
1379 // If this instruction is a "root instruction" then it's
1380 // required that we can't look through it to see the
1381 // definition. This means that the `ValueUseState` for the
1382 // operands of this result assume that this instruction is
1383 // generated exactly once which might get violated were we
1384 // to allow looking through it.
1385 trace!(" -> is a root instruction");
1386 InputSourceInst::None
1387 } else if !src_side_effect {
1388 // Otherwise if this instruction has no side effects and the
1389 // value is used only once then we can look through it with
1390 // a "unique" tag. A non-unique `Use` can be shown for other
1391 // values ensuring consumers know how it's computed but that
1392 // it's not available to omit.
1393 if self.value_ir_uses[val] == ValueUseState::Once {
1394 InputSourceInst::UniqueUse(src_inst, result_idx)
1395 } else {
1396 InputSourceInst::Use(src_inst, result_idx)
1397 }
1398 } else {
1399 // Side-effect: test whether this is the only use of the
1400 // only result of the instruction, and whether colors allow
1401 // the code-motion.
1402 trace!(
1403 " -> side-effecting op {} for val {}: use state {:?}",
1404 src_inst,
1405 val,
1406 self.value_ir_uses[val]
1407 );
1408 if self.cur_scan_entry_color.is_some()
1409 && self.value_ir_uses[val] == ValueUseState::Once
1410 && self.num_outputs(src_inst) == 1
1411 && self
1412 .side_effect_inst_entry_colors
1413 .get(&src_inst)
1414 .unwrap()
1415 .get()
1416 + 1
1417 == self.cur_scan_entry_color.unwrap().get()
1418 {
1419 InputSourceInst::UniqueUse(src_inst, 0)
1420 } else {
1421 InputSourceInst::None
1422 }
1423 }
1424 }
1425 _ => InputSourceInst::None,
1426 };
1427 let constant = inst.as_inst().and_then(|(inst, _)| self.get_constant(inst));
1428
1429 NonRegInput { inst, constant }
1430 }
1431
1432 /// Increment the reference count for the Value, ensuring that it gets lowered.
1433 pub fn increment_lowered_uses(&mut self, val: Value) {
1434 self.value_lowered_uses[val] += 1
1435 }
1436
1437 /// Put the `idx`th input into register(s) and return the assigned register.
1438 pub fn put_input_in_regs(&mut self, ir_inst: Inst, idx: usize) -> ValueRegs<Reg> {
1439 let val = self.f.dfg.inst_args(ir_inst)[idx];
1440 self.put_value_in_regs(val)
1441 }
1442
1443 /// Put the given value into register(s) and return the assigned register.
1444 pub fn put_value_in_regs(&mut self, val: Value) -> ValueRegs<Reg> {
1445 debug_assert!(self.f.dfg.value_is_real(val));
1446 trace!("put_value_in_regs: val {}", val);
1447
1448 if let Some(inst) = self.f.dfg.value_def(val).inst() {
1449 assert!(!self.inst_sunk.contains(&inst));
1450 }
1451
1452 let regs = self.value_regs[val];
1453 trace!(" -> regs {:?}", regs);
1454 assert!(regs.is_valid());
1455
1456 self.value_lowered_uses[val] += 1;
1457
1458 regs
1459 }
1460}
1461
1462/// Codegen primitives: allocate temps, emit instructions, set result registers,
1463/// ask for an input to be gen'd into a register.
1464impl<'func, I: VCodeInst> Lower<'func, I> {
1465 /// Get a new temp.
1466 pub fn alloc_tmp(&mut self, ty: Type) -> ValueRegs<Writable<Reg>> {
1467 writable_value_regs(self.vregs.alloc_with_deferred_error(ty))
1468 }
1469
1470 /// Emit a machine instruction.
1471 pub fn emit(&mut self, mach_inst: I) {
1472 trace!("emit: {:?}", mach_inst);
1473 self.ir_insts.push(mach_inst);
1474 }
1475
1476 /// Indicate that the side-effect of an instruction has been sunk to the
1477 /// current scan location. This should only be done with the instruction's
1478 /// original results are not used (i.e., `put_input_in_regs` is not invoked
1479 /// for the input produced by the sunk instruction), otherwise the
1480 /// side-effect will occur twice.
1481 pub fn sink_inst(&mut self, ir_inst: Inst) {
1482 assert!(has_lowering_side_effect(self.f, ir_inst));
1483 assert!(self.cur_scan_entry_color.is_some());
1484
1485 for result in self.dfg().inst_results(ir_inst) {
1486 assert!(self.value_lowered_uses[*result] == 0);
1487 }
1488
1489 let sunk_inst_entry_color = self
1490 .side_effect_inst_entry_colors
1491 .get(&ir_inst)
1492 .cloned()
1493 .unwrap();
1494 let sunk_inst_exit_color = InstColor::new(sunk_inst_entry_color.get() + 1);
1495 assert!(sunk_inst_exit_color == self.cur_scan_entry_color.unwrap());
1496 self.cur_scan_entry_color = Some(sunk_inst_entry_color);
1497 self.inst_sunk.insert(ir_inst);
1498 }
1499
1500 /// Retrieve immediate data given a handle.
1501 pub fn get_immediate_data(&self, imm: Immediate) -> &ConstantData {
1502 self.f.dfg.immediates.get(imm).unwrap()
1503 }
1504
1505 /// Retrieve constant data given a handle.
1506 pub fn get_constant_data(&self, constant_handle: Constant) -> &ConstantData {
1507 self.f.dfg.constants.get(constant_handle)
1508 }
1509
1510 /// Indicate that a constant should be emitted.
1511 pub fn use_constant(&mut self, constant: VCodeConstantData) -> VCodeConstant {
1512 self.vcode.constants().insert(constant)
1513 }
1514
1515 /// Cause the value in `reg` to be in a virtual reg, by copying it into a new virtual reg
1516 /// if `reg` is a real reg. `ty` describes the type of the value in `reg`.
1517 pub fn ensure_in_vreg(&mut self, reg: Reg, ty: Type) -> Reg {
1518 if reg.to_virtual_reg().is_some() {
1519 reg
1520 } else {
1521 let new_reg = self.alloc_tmp(ty).only_reg().unwrap();
1522 self.emit(I::gen_move(new_reg, reg, ty));
1523 new_reg.to_reg()
1524 }
1525 }
1526
1527 /// Add a range fact to a register, if no other fact is present.
1528 pub fn add_range_fact(&mut self, reg: Reg, bit_width: u16, min: u64, max: u64) {
1529 if self.flags.enable_pcc() {
1530 self.vregs.set_fact_if_missing(
1531 reg.to_virtual_reg().unwrap(),
1532 Fact::Range {
1533 bit_width,
1534 min,
1535 max,
1536 },
1537 );
1538 }
1539 }
1540}
1541
1542#[cfg(test)]
1543mod tests {
1544 use super::ValueUseState;
1545 use crate::cursor::{Cursor, FuncCursor};
1546 use crate::ir::types;
1547 use crate::ir::{Function, InstBuilder};
1548
1549 #[test]
1550 fn multi_result_use_once() {
1551 let mut func = Function::new();
1552 let block0 = func.dfg.make_block();
1553 let mut pos = FuncCursor::new(&mut func);
1554 pos.insert_block(block0);
1555 let v1 = pos.ins().iconst(types::I64, 0);
1556 let v2 = pos.ins().iconst(types::I64, 1);
1557 let v3 = pos.ins().iconcat(v1, v2);
1558 let (v4, v5) = pos.ins().isplit(v3);
1559 pos.ins().return_(&[v4, v5]);
1560 let func = pos.func;
1561
1562 let uses = super::compute_use_states(&func, None);
1563 assert_eq!(uses[v1], ValueUseState::Once);
1564 assert_eq!(uses[v2], ValueUseState::Once);
1565 assert_eq!(uses[v3], ValueUseState::Once);
1566 assert_eq!(uses[v4], ValueUseState::Once);
1567 assert_eq!(uses[v5], ValueUseState::Once);
1568 }
1569
1570 #[test]
1571 fn results_used_twice_but_not_operands() {
1572 let mut func = Function::new();
1573 let block0 = func.dfg.make_block();
1574 let mut pos = FuncCursor::new(&mut func);
1575 pos.insert_block(block0);
1576 let v1 = pos.ins().iconst(types::I64, 0);
1577 let v2 = pos.ins().iconst(types::I64, 1);
1578 let v3 = pos.ins().iconcat(v1, v2);
1579 let (v4, v5) = pos.ins().isplit(v3);
1580 pos.ins().return_(&[v4, v4]);
1581 let func = pos.func;
1582
1583 let uses = super::compute_use_states(&func, None);
1584 assert_eq!(uses[v1], ValueUseState::Once);
1585 assert_eq!(uses[v2], ValueUseState::Once);
1586 assert_eq!(uses[v3], ValueUseState::Once);
1587 assert_eq!(uses[v4], ValueUseState::Multiple);
1588 assert_eq!(uses[v5], ValueUseState::Unused);
1589 }
1590}