cranelift_codegen/machinst/mod.rs
1//! This module exposes the machine-specific backend definition pieces.
2//!
3//! The MachInst infrastructure is the compiler backend, from CLIF
4//! (ir::Function) to machine code. The purpose of this infrastructure is, at a
5//! high level, to do instruction selection/lowering (to machine instructions),
6//! register allocation, and then perform all the fixups to branches, constant
7//! data references, etc., needed to actually generate machine code.
8//!
9//! The container for machine instructions, at various stages of construction,
10//! is the `VCode` struct. We refer to a sequence of machine instructions organized
11//! into basic blocks as "vcode". This is short for "virtual-register code".
12//!
13//! The compilation pipeline, from an `ir::Function` (already optimized as much as
14//! you like by machine-independent optimization passes) onward, is as follows.
15//!
16//! ```plain
17//!
18//! ir::Function (SSA IR, machine-independent opcodes)
19//! |
20//! | [lower]
21//! |
22//! VCode<arch_backend::Inst> (machine instructions:
23//! | - mostly virtual registers.
24//! | - cond branches in two-target form.
25//! | - branch targets are block indices.
26//! | - in-memory constants held by insns,
27//! | with unknown offsets.
28//! | - critical edges (actually all edges)
29//! | are split.)
30//! |
31//! | [regalloc --> `regalloc2::Output`; VCode is unchanged]
32//! |
33//! | [binary emission via MachBuffer]
34//! |
35//! Vec<u8> (machine code:
36//! | - two-dest branches resolved via
37//! | streaming branch resolution/simplification.
38//! | - regalloc `Allocation` results used directly
39//! | by instruction emission code.
40//! | - prologue and epilogue(s) built and emitted
41//! | directly during emission.
42//! | - SP-relative offsets resolved by tracking
43//! | EmitState.)
44//!
45//! ```
46
47use crate::binemit::{Addend, CodeInfo, CodeOffset, Reloc};
48use crate::ir::{
49 self, function::FunctionParameters, DynamicStackSlot, RelSourceLoc, StackSlot, Type,
50};
51use crate::isa::FunctionAlignment;
52use crate::result::CodegenResult;
53use crate::settings;
54use crate::settings::Flags;
55use crate::value_label::ValueLabelsRanges;
56use alloc::vec::Vec;
57use core::fmt::Debug;
58use cranelift_control::ControlPlane;
59use cranelift_entity::PrimaryMap;
60use regalloc2::VReg;
61use smallvec::{smallvec, SmallVec};
62use std::string::String;
63
64#[cfg(feature = "enable-serde")]
65use serde_derive::{Deserialize, Serialize};
66
67#[macro_use]
68pub mod isle;
69
70pub mod lower;
71pub use lower::*;
72pub mod vcode;
73pub use vcode::*;
74pub mod compile;
75pub use compile::*;
76pub mod blockorder;
77pub use blockorder::*;
78pub mod abi;
79pub use abi::*;
80pub mod buffer;
81pub use buffer::*;
82pub mod helpers;
83pub use helpers::*;
84pub mod inst_common;
85#[allow(unused_imports)] // not used in all backends right now
86pub use inst_common::*;
87pub mod valueregs;
88pub use reg::*;
89pub use valueregs::*;
90pub mod pcc;
91pub mod reg;
92
93/// A machine instruction.
94pub trait MachInst: Clone + Debug {
95 /// The ABI machine spec for this `MachInst`.
96 type ABIMachineSpec: ABIMachineSpec<I = Self>;
97
98 /// Return the registers referenced by this machine instruction along with
99 /// the modes of reference (use, def, modify).
100 fn get_operands(&mut self, collector: &mut impl OperandVisitor);
101
102 /// If this is a simple move, return the (source, destination) tuple of registers.
103 fn is_move(&self) -> Option<(Writable<Reg>, Reg)>;
104
105 /// Is this a terminator (branch or ret)? If so, return its type
106 /// (ret/uncond/cond) and target if applicable.
107 fn is_term(&self) -> MachTerminator;
108
109 /// Is this an unconditional trap?
110 fn is_trap(&self) -> bool;
111
112 /// Is this an "args" pseudoinst?
113 fn is_args(&self) -> bool;
114
115 /// Should this instruction be included in the clobber-set?
116 fn is_included_in_clobbers(&self) -> bool;
117
118 /// Does this instruction access memory?
119 fn is_mem_access(&self) -> bool;
120
121 /// Generate a move.
122 fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self;
123
124 /// Generate a dummy instruction that will keep a value alive but
125 /// has no other purpose.
126 fn gen_dummy_use(reg: Reg) -> Self;
127
128 /// Determine register class(es) to store the given Cranelift type, and the
129 /// Cranelift type actually stored in the underlying register(s). May return
130 /// an error if the type isn't supported by this backend.
131 ///
132 /// If the type requires multiple registers, then the list of registers is
133 /// returned in little-endian order.
134 ///
135 /// Note that the type actually stored in the register(s) may differ in the
136 /// case that a value is split across registers: for example, on a 32-bit
137 /// target, an I64 may be stored in two registers, each of which holds an
138 /// I32. The actually-stored types are used only to inform the backend when
139 /// generating spills and reloads for individual registers.
140 fn rc_for_type(ty: Type) -> CodegenResult<(&'static [RegClass], &'static [Type])>;
141
142 /// Get an appropriate type that can fully hold a value in a given
143 /// register class. This may not be the only type that maps to
144 /// that class, but when used with `gen_move()` or the ABI trait's
145 /// load/spill constructors, it should produce instruction(s) that
146 /// move the entire register contents.
147 fn canonical_type_for_rc(rc: RegClass) -> Type;
148
149 /// Generate a jump to another target. Used during lowering of
150 /// control flow.
151 fn gen_jump(target: MachLabel) -> Self;
152
153 /// Generate a store of an immediate 64-bit integer to a register. Used by
154 /// the control plane to generate random instructions.
155 fn gen_imm_u64(_value: u64, _dst: Writable<Reg>) -> Option<Self> {
156 None
157 }
158
159 /// Generate a store of an immediate 64-bit integer to a register. Used by
160 /// the control plane to generate random instructions. The tmp register may
161 /// be used by architectures which don't support writing immediate values to
162 /// floating point registers directly.
163 fn gen_imm_f64(_value: f64, _tmp: Writable<Reg>, _dst: Writable<Reg>) -> SmallVec<[Self; 2]> {
164 SmallVec::new()
165 }
166
167 /// Generate a NOP. The `preferred_size` parameter allows the caller to
168 /// request a NOP of that size, or as close to it as possible. The machine
169 /// backend may return a NOP whose binary encoding is smaller than the
170 /// preferred size, but must not return a NOP that is larger. However,
171 /// the instruction must have a nonzero size if preferred_size is nonzero.
172 fn gen_nop(preferred_size: usize) -> Self;
173
174 /// Align a basic block offset (from start of function). By default, no
175 /// alignment occurs.
176 fn align_basic_block(offset: CodeOffset) -> CodeOffset {
177 offset
178 }
179
180 /// What is the worst-case instruction size emitted by this instruction type?
181 fn worst_case_size() -> CodeOffset;
182
183 /// What is the register class used for reference types (GC-observable pointers)? Can
184 /// be dependent on compilation flags.
185 fn ref_type_regclass(_flags: &Flags) -> RegClass;
186
187 /// Is this a safepoint?
188 fn is_safepoint(&self) -> bool;
189
190 /// Generate an instruction that must appear at the beginning of a basic
191 /// block, if any. Note that the return value must not be subject to
192 /// register allocation.
193 fn gen_block_start(
194 _is_indirect_branch_target: bool,
195 _is_forward_edge_cfi_enabled: bool,
196 ) -> Option<Self> {
197 None
198 }
199
200 /// Returns a description of the alignment required for functions for this
201 /// architecture.
202 fn function_alignment() -> FunctionAlignment;
203
204 /// A label-use kind: a type that describes the types of label references that
205 /// can occur in an instruction.
206 type LabelUse: MachInstLabelUse;
207
208 /// Byte representation of a trap opcode which is inserted by `MachBuffer`
209 /// during its `defer_trap` method.
210 const TRAP_OPCODE: &'static [u8];
211}
212
213/// A descriptor of a label reference (use) in an instruction set.
214pub trait MachInstLabelUse: Clone + Copy + Debug + Eq {
215 /// Required alignment for any veneer. Usually the required instruction
216 /// alignment (e.g., 4 for a RISC with 32-bit instructions, or 1 for x86).
217 const ALIGN: CodeOffset;
218
219 /// What is the maximum PC-relative range (positive)? E.g., if `1024`, a
220 /// label-reference fixup at offset `x` is valid if the label resolves to `x
221 /// + 1024`.
222 fn max_pos_range(self) -> CodeOffset;
223 /// What is the maximum PC-relative range (negative)? This is the absolute
224 /// value; i.e., if `1024`, then a label-reference fixup at offset `x` is
225 /// valid if the label resolves to `x - 1024`.
226 fn max_neg_range(self) -> CodeOffset;
227 /// What is the size of code-buffer slice this label-use needs to patch in
228 /// the label's value?
229 fn patch_size(self) -> CodeOffset;
230 /// Perform a code-patch, given the offset into the buffer of this label use
231 /// and the offset into the buffer of the label's definition.
232 /// It is guaranteed that, given `delta = offset - label_offset`, we will
233 /// have `offset >= -self.max_neg_range()` and `offset <=
234 /// self.max_pos_range()`.
235 fn patch(self, buffer: &mut [u8], use_offset: CodeOffset, label_offset: CodeOffset);
236 /// Can the label-use be patched to a veneer that supports a longer range?
237 /// Usually valid for jumps (a short-range jump can jump to a longer-range
238 /// jump), but not for e.g. constant pool references, because the constant
239 /// load would require different code (one more level of indirection).
240 fn supports_veneer(self) -> bool;
241 /// How many bytes are needed for a veneer?
242 fn veneer_size(self) -> CodeOffset;
243 /// What's the largest possible veneer that may be generated?
244 fn worst_case_veneer_size() -> CodeOffset;
245 /// Generate a veneer. The given code-buffer slice is `self.veneer_size()`
246 /// bytes long at offset `veneer_offset` in the buffer. The original
247 /// label-use will be patched to refer to this veneer's offset. A new
248 /// (offset, LabelUse) is returned that allows the veneer to use the actual
249 /// label. For veneers to work properly, it is expected that the new veneer
250 /// has a larger range; on most platforms this probably means either a
251 /// "long-range jump" (e.g., on ARM, the 26-bit form), or if already at that
252 /// stage, a jump that supports a full 32-bit range, for example.
253 fn generate_veneer(self, buffer: &mut [u8], veneer_offset: CodeOffset) -> (CodeOffset, Self);
254
255 /// Returns the corresponding label-use for the relocation specified.
256 ///
257 /// This returns `None` if the relocation doesn't have a corresponding
258 /// representation for the target architecture.
259 fn from_reloc(reloc: Reloc, addend: Addend) -> Option<Self>;
260}
261
262/// Describes a block terminator (not call) in the vcode, when its branches
263/// have not yet been finalized (so a branch may have two targets).
264///
265/// Actual targets are not included: the single-source-of-truth for
266/// those is the VCode itself, which holds, for each block, successors
267/// and outgoing branch args per successor.
268#[derive(Clone, Debug, PartialEq, Eq)]
269pub enum MachTerminator {
270 /// Not a terminator.
271 None,
272 /// A return instruction.
273 Ret,
274 /// A tail call.
275 RetCall,
276 /// An unconditional branch to another block.
277 Uncond,
278 /// A conditional branch to one of two other blocks.
279 Cond,
280 /// An indirect branch with known possible targets.
281 Indirect,
282}
283
284/// A trait describing the ability to encode a MachInst into binary machine code.
285pub trait MachInstEmit: MachInst {
286 /// Persistent state carried across `emit` invocations.
287 type State: MachInstEmitState<Self>;
288
289 /// Constant information used in `emit` invocations.
290 type Info;
291
292 /// Emit the instruction.
293 fn emit(&self, code: &mut MachBuffer<Self>, info: &Self::Info, state: &mut Self::State);
294
295 /// Pretty-print the instruction.
296 fn pretty_print_inst(&self, state: &mut Self::State) -> String;
297}
298
299/// A trait describing the emission state carried between MachInsts when
300/// emitting a function body.
301pub trait MachInstEmitState<I: VCodeInst>: Default + Clone + Debug {
302 /// Create a new emission state given the ABI object.
303 fn new(abi: &Callee<I::ABIMachineSpec>, ctrl_plane: ControlPlane) -> Self;
304
305 /// Update the emission state before emitting an instruction that is a
306 /// safepoint.
307 fn pre_safepoint(&mut self, user_stack_map: Option<ir::UserStackMap>);
308
309 /// The emission state holds ownership of a control plane, so it doesn't
310 /// have to be passed around explicitly too much. `ctrl_plane_mut` may
311 /// be used if temporary access to the control plane is needed by some
312 /// other function that doesn't have access to the emission state.
313 fn ctrl_plane_mut(&mut self) -> &mut ControlPlane;
314
315 /// Used to continue using a control plane after the emission state is
316 /// not needed anymore.
317 fn take_ctrl_plane(self) -> ControlPlane;
318
319 /// A hook that triggers when first emitting a new block.
320 /// It is guaranteed to be called before any instructions are emitted.
321 fn on_new_block(&mut self) {}
322
323 /// The [`FrameLayout`] for the function currently being compiled.
324 fn frame_layout(&self) -> &FrameLayout;
325}
326
327/// The result of a `MachBackend::compile_function()` call. Contains machine
328/// code (as bytes) and a disassembly, if requested.
329#[derive(PartialEq, Debug, Clone)]
330#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
331pub struct CompiledCodeBase<T: CompilePhase> {
332 /// Machine code.
333 pub buffer: MachBufferFinalized<T>,
334 /// Size of stack frame, in bytes.
335 pub frame_size: u32,
336 /// Disassembly, if requested.
337 pub vcode: Option<String>,
338 /// Debug info: value labels to registers/stackslots at code offsets.
339 pub value_labels_ranges: ValueLabelsRanges,
340 /// Debug info: stackslots to stack pointer offsets.
341 pub sized_stackslot_offsets: PrimaryMap<StackSlot, u32>,
342 /// Debug info: stackslots to stack pointer offsets.
343 pub dynamic_stackslot_offsets: PrimaryMap<DynamicStackSlot, u32>,
344 /// Basic-block layout info: block start offsets.
345 ///
346 /// This info is generated only if the `machine_code_cfg_info`
347 /// flag is set.
348 pub bb_starts: Vec<CodeOffset>,
349 /// Basic-block layout info: block edges. Each edge is `(from,
350 /// to)`, where `from` and `to` are basic-block start offsets of
351 /// the respective blocks.
352 ///
353 /// This info is generated only if the `machine_code_cfg_info`
354 /// flag is set.
355 pub bb_edges: Vec<(CodeOffset, CodeOffset)>,
356}
357
358impl CompiledCodeStencil {
359 /// Apply function parameters to finalize a stencil into its final form.
360 pub fn apply_params(self, params: &FunctionParameters) -> CompiledCode {
361 CompiledCode {
362 buffer: self.buffer.apply_base_srcloc(params.base_srcloc()),
363 frame_size: self.frame_size,
364 vcode: self.vcode,
365 value_labels_ranges: self.value_labels_ranges,
366 sized_stackslot_offsets: self.sized_stackslot_offsets,
367 dynamic_stackslot_offsets: self.dynamic_stackslot_offsets,
368 bb_starts: self.bb_starts,
369 bb_edges: self.bb_edges,
370 }
371 }
372}
373
374impl<T: CompilePhase> CompiledCodeBase<T> {
375 /// Get a `CodeInfo` describing section sizes from this compilation result.
376 pub fn code_info(&self) -> CodeInfo {
377 CodeInfo {
378 total_size: self.buffer.total_size(),
379 }
380 }
381
382 /// Returns a reference to the machine code generated for this function compilation.
383 pub fn code_buffer(&self) -> &[u8] {
384 self.buffer.data()
385 }
386
387 /// Get the disassembly of the buffer, using the given capstone context.
388 #[cfg(feature = "disas")]
389 pub fn disassemble(
390 &self,
391 params: Option<&crate::ir::function::FunctionParameters>,
392 cs: &capstone::Capstone,
393 ) -> Result<String, anyhow::Error> {
394 use std::fmt::Write;
395
396 let mut buf = String::new();
397
398 let relocs = self.buffer.relocs();
399 let traps = self.buffer.traps();
400
401 // Normalize the block starts to include an initial block of offset 0.
402 let mut block_starts = Vec::new();
403 if self.bb_starts.first().copied() != Some(0) {
404 block_starts.push(0);
405 }
406 block_starts.extend_from_slice(&self.bb_starts);
407 block_starts.push(self.buffer.data().len() as u32);
408
409 // Iterate over block regions, to ensure that we always produce block labels
410 for (n, (&start, &end)) in block_starts
411 .iter()
412 .zip(block_starts.iter().skip(1))
413 .enumerate()
414 {
415 writeln!(buf, "block{n}: ; offset 0x{start:x}")?;
416
417 let buffer = &self.buffer.data()[start as usize..end as usize];
418 let insns = cs.disasm_all(buffer, start as u64).map_err(map_caperr)?;
419 for i in insns.iter() {
420 write!(buf, " ")?;
421
422 let op_str = i.op_str().unwrap_or("");
423 if let Some(s) = i.mnemonic() {
424 write!(buf, "{s}")?;
425 if !op_str.is_empty() {
426 write!(buf, " ")?;
427 }
428 }
429
430 write!(buf, "{op_str}")?;
431
432 let end = i.address() + i.bytes().len() as u64;
433 let contains = |off| i.address() <= off && off < end;
434
435 for reloc in relocs.iter().filter(|reloc| contains(reloc.offset as u64)) {
436 write!(
437 buf,
438 " ; reloc_external {} {} {}",
439 reloc.kind,
440 reloc.target.display(params),
441 reloc.addend,
442 )?;
443 }
444
445 if let Some(trap) = traps.iter().find(|trap| contains(trap.offset as u64)) {
446 write!(buf, " ; trap: {}", trap.code)?;
447 }
448
449 writeln!(buf)?;
450 }
451 }
452
453 return Ok(buf);
454
455 fn map_caperr(err: capstone::Error) -> anyhow::Error {
456 anyhow::format_err!("{}", err)
457 }
458 }
459}
460
461/// Result of compiling a `FunctionStencil`, before applying `FunctionParameters` onto it.
462///
463/// Only used internally, in a transient manner, for the incremental compilation cache.
464pub type CompiledCodeStencil = CompiledCodeBase<Stencil>;
465
466/// `CompiledCode` in its final form (i.e. after `FunctionParameters` have been applied), ready for
467/// consumption.
468pub type CompiledCode = CompiledCodeBase<Final>;
469
470impl CompiledCode {
471 /// If available, return information about the code layout in the
472 /// final machine code: the offsets (in bytes) of each basic-block
473 /// start, and all basic-block edges.
474 pub fn get_code_bb_layout(&self) -> (Vec<usize>, Vec<(usize, usize)>) {
475 (
476 self.bb_starts.iter().map(|&off| off as usize).collect(),
477 self.bb_edges
478 .iter()
479 .map(|&(from, to)| (from as usize, to as usize))
480 .collect(),
481 )
482 }
483
484 /// Creates unwind information for the function.
485 ///
486 /// Returns `None` if the function has no unwind information.
487 #[cfg(feature = "unwind")]
488 pub fn create_unwind_info(
489 &self,
490 isa: &dyn crate::isa::TargetIsa,
491 ) -> CodegenResult<Option<crate::isa::unwind::UnwindInfo>> {
492 use crate::isa::unwind::UnwindInfoKind;
493 let unwind_info_kind = match isa.triple().operating_system {
494 target_lexicon::OperatingSystem::Windows => UnwindInfoKind::Windows,
495 _ => UnwindInfoKind::SystemV,
496 };
497 self.create_unwind_info_of_kind(isa, unwind_info_kind)
498 }
499
500 /// Creates unwind information for the function using the supplied
501 /// "kind". Supports cross-OS (but not cross-arch) generation.
502 ///
503 /// Returns `None` if the function has no unwind information.
504 #[cfg(feature = "unwind")]
505 pub fn create_unwind_info_of_kind(
506 &self,
507 isa: &dyn crate::isa::TargetIsa,
508 unwind_info_kind: crate::isa::unwind::UnwindInfoKind,
509 ) -> CodegenResult<Option<crate::isa::unwind::UnwindInfo>> {
510 isa.emit_unwind_info(self, unwind_info_kind)
511 }
512}
513
514/// An object that can be used to create the text section of an executable.
515///
516/// This primarily handles resolving relative relocations at
517/// text-section-assembly time rather than at load/link time. This
518/// architecture-specific logic is sort of like a linker, but only for one
519/// object file at a time.
520pub trait TextSectionBuilder {
521 /// Appends `data` to the text section with the `align` specified.
522 ///
523 /// If `labeled` is `true` then this also binds the appended data to the
524 /// `n`th label for how many times this has been called with `labeled:
525 /// true`. The label target can be passed as the `target` argument to
526 /// `resolve_reloc`.
527 ///
528 /// This function returns the offset at which the data was placed in the
529 /// text section.
530 fn append(
531 &mut self,
532 labeled: bool,
533 data: &[u8],
534 align: u32,
535 ctrl_plane: &mut ControlPlane,
536 ) -> u64;
537
538 /// Attempts to resolve a relocation for this function.
539 ///
540 /// The `offset` is the offset of the relocation, within the text section.
541 /// The `reloc` is the kind of relocation.
542 /// The `addend` is the value to add to the relocation.
543 /// The `target` is the labeled function that is the target of this
544 /// relocation.
545 ///
546 /// Labeled functions are created with the `append` function above by
547 /// setting the `labeled` parameter to `true`.
548 ///
549 /// If this builder does not know how to handle `reloc` then this function
550 /// will return `false`. Otherwise this function will return `true` and this
551 /// relocation will be resolved in the final bytes returned by `finish`.
552 fn resolve_reloc(&mut self, offset: u64, reloc: Reloc, addend: Addend, target: usize) -> bool;
553
554 /// A debug-only option which is used to for
555 fn force_veneers(&mut self);
556
557 /// Completes this text section, filling out any final details, and returns
558 /// the bytes of the text section.
559 fn finish(&mut self, ctrl_plane: &mut ControlPlane) -> Vec<u8>;
560}