cranelift_codegen/machinst/
vcode.rs

1//! This implements the VCode container: a CFG of Insts that have been lowered.
2//!
3//! VCode is virtual-register code. An instruction in VCode is almost a machine
4//! instruction; however, its register slots can refer to virtual registers in
5//! addition to real machine registers.
6//!
7//! VCode is structured with traditional basic blocks, and
8//! each block must be terminated by an unconditional branch (one target), a
9//! conditional branch (two targets), or a return (no targets). Note that this
10//! slightly differs from the machine code of most ISAs: in most ISAs, a
11//! conditional branch has one target (and the not-taken case falls through).
12//! However, we expect that machine backends will elide branches to the following
13//! block (i.e., zero-offset jumps), and will be able to codegen a branch-cond /
14//! branch-uncond pair if *both* targets are not fallthrough. This allows us to
15//! play with layout prior to final binary emission, as well, if we want.
16//!
17//! See the main module comment in `mod.rs` for more details on the VCode-based
18//! backend pipeline.
19
20use crate::ir::pcc::*;
21use crate::ir::{self, types, Constant, ConstantData, ValueLabel};
22use crate::machinst::*;
23use crate::ranges::Ranges;
24use crate::timing;
25use crate::trace;
26use crate::CodegenError;
27use crate::{LabelValueLoc, ValueLocRange};
28use regalloc2::{
29    Edit, Function as RegallocFunction, InstOrEdit, InstRange, MachineEnv, Operand,
30    OperandConstraint, OperandKind, PRegSet, RegClass,
31};
32use rustc_hash::FxHashMap;
33
34use core::mem::take;
35use cranelift_entity::{entity_impl, Keys};
36use std::collections::hash_map::Entry;
37use std::collections::HashMap;
38use std::fmt;
39
40/// Index referring to an instruction in VCode.
41pub type InsnIndex = regalloc2::Inst;
42
43/// Extension trait for `InsnIndex` to allow conversion to a
44/// `BackwardsInsnIndex`.
45trait ToBackwardsInsnIndex {
46    fn to_backwards_insn_index(&self, num_insts: usize) -> BackwardsInsnIndex;
47}
48
49impl ToBackwardsInsnIndex for InsnIndex {
50    fn to_backwards_insn_index(&self, num_insts: usize) -> BackwardsInsnIndex {
51        BackwardsInsnIndex::new(num_insts - self.index() - 1)
52    }
53}
54
55/// An index referring to an instruction in the VCode when it is backwards,
56/// during VCode construction.
57#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
58#[cfg_attr(
59    feature = "enable-serde",
60    derive(::serde::Serialize, ::serde::Deserialize)
61)]
62pub struct BackwardsInsnIndex(InsnIndex);
63
64impl BackwardsInsnIndex {
65    pub fn new(i: usize) -> Self {
66        BackwardsInsnIndex(InsnIndex::new(i))
67    }
68}
69
70/// Index referring to a basic block in VCode.
71pub type BlockIndex = regalloc2::Block;
72
73/// VCodeInst wraps all requirements for a MachInst to be in VCode: it must be
74/// a `MachInst` and it must be able to emit itself at least to a `SizeCodeSink`.
75pub trait VCodeInst: MachInst + MachInstEmit {}
76impl<I: MachInst + MachInstEmit> VCodeInst for I {}
77
78/// A function in "VCode" (virtualized-register code) form, after
79/// lowering.  This is essentially a standard CFG of basic blocks,
80/// where each basic block consists of lowered instructions produced
81/// by the machine-specific backend.
82///
83/// Note that the VCode is immutable once produced, and is not
84/// modified by register allocation in particular. Rather, register
85/// allocation on the `VCode` produces a separate `regalloc2::Output`
86/// struct, and this can be passed to `emit`. `emit` in turn does not
87/// modify the vcode, but produces an `EmitResult`, which contains the
88/// machine code itself, and the associated disassembly and/or
89/// metadata as requested.
90pub struct VCode<I: VCodeInst> {
91    /// VReg IR-level types.
92    vreg_types: Vec<Type>,
93
94    /// Lowered machine instructions in order corresponding to the original IR.
95    insts: Vec<I>,
96
97    /// A map from backwards instruction index to the user stack map for that
98    /// instruction.
99    ///
100    /// This is a sparse side table that only has entries for instructions that
101    /// are safepoints, and only for a subset of those that have an associated
102    /// user stack map.
103    user_stack_maps: FxHashMap<BackwardsInsnIndex, ir::UserStackMap>,
104
105    /// Operands: pre-regalloc references to virtual registers with
106    /// constraints, in one flattened array. This allows the regalloc
107    /// to efficiently access all operands without requiring expensive
108    /// matches or method invocations on insts.
109    operands: Vec<Operand>,
110
111    /// Operand index ranges: for each instruction in `insts`, there
112    /// is a tuple here providing the range in `operands` for that
113    /// instruction's operands.
114    operand_ranges: Ranges,
115
116    /// Clobbers: a sparse map from instruction indices to clobber masks.
117    clobbers: FxHashMap<InsnIndex, PRegSet>,
118
119    /// Source locations for each instruction. (`SourceLoc` is a `u32`, so it is
120    /// reasonable to keep one of these per instruction.)
121    srclocs: Vec<RelSourceLoc>,
122
123    /// Entry block.
124    entry: BlockIndex,
125
126    /// Block instruction indices.
127    block_ranges: Ranges,
128
129    /// Block successors: index range in the `block_succs` list.
130    block_succ_range: Ranges,
131
132    /// Block successor lists, concatenated into one vec. The
133    /// `block_succ_range` list of tuples above gives (start, end)
134    /// ranges within this list that correspond to each basic block's
135    /// successors.
136    block_succs: Vec<regalloc2::Block>,
137
138    /// Block predecessors: index range in the `block_preds` list.
139    block_pred_range: Ranges,
140
141    /// Block predecessor lists, concatenated into one vec. The
142    /// `block_pred_range` list of tuples above gives (start, end)
143    /// ranges within this list that correspond to each basic block's
144    /// predecessors.
145    block_preds: Vec<regalloc2::Block>,
146
147    /// Block parameters: index range in `block_params` below.
148    block_params_range: Ranges,
149
150    /// Block parameter lists, concatenated into one vec. The
151    /// `block_params_range` list of tuples above gives (start, end)
152    /// ranges within this list that correspond to each basic block's
153    /// blockparam vregs.
154    block_params: Vec<regalloc2::VReg>,
155
156    /// Outgoing block arguments on branch instructions, concatenated
157    /// into one list.
158    ///
159    /// Note that this is conceptually a 3D array: we have a VReg list
160    /// per block, per successor. We flatten those three dimensions
161    /// into this 1D vec, then store index ranges in two levels of
162    /// indirection.
163    ///
164    /// Indexed by the indices in `branch_block_arg_succ_range`.
165    branch_block_args: Vec<regalloc2::VReg>,
166
167    /// Array of sequences of (start, end) tuples in
168    /// `branch_block_args`, one for each successor; these sequences
169    /// for each block are concatenated.
170    ///
171    /// Indexed by the indices in `branch_block_arg_succ_range`.
172    branch_block_arg_range: Ranges,
173
174    /// For a given block, indices in `branch_block_arg_range`
175    /// corresponding to all of its successors.
176    branch_block_arg_succ_range: Ranges,
177
178    /// Block-order information.
179    block_order: BlockLoweringOrder,
180
181    /// ABI object.
182    pub(crate) abi: Callee<I::ABIMachineSpec>,
183
184    /// Constant information used during code emission. This should be
185    /// immutable across function compilations within the same module.
186    emit_info: I::Info,
187
188    /// Constants.
189    pub(crate) constants: VCodeConstants,
190
191    /// Value labels for debuginfo attached to vregs.
192    debug_value_labels: Vec<(VReg, InsnIndex, InsnIndex, u32)>,
193
194    pub(crate) sigs: SigSet,
195
196    /// Facts on VRegs, for proof-carrying code verification.
197    facts: Vec<Option<Fact>>,
198}
199
200/// The result of `VCode::emit`. Contains all information computed
201/// during emission: actual machine code, optionally a disassembly,
202/// and optionally metadata about the code layout.
203pub struct EmitResult {
204    /// The MachBuffer containing the machine code.
205    pub buffer: MachBufferFinalized<Stencil>,
206
207    /// Offset of each basic block, recorded during emission. Computed
208    /// only if `debug_value_labels` is non-empty.
209    pub bb_offsets: Vec<CodeOffset>,
210
211    /// Final basic-block edges, in terms of code offsets of
212    /// bb-starts. Computed only if `debug_value_labels` is non-empty.
213    pub bb_edges: Vec<(CodeOffset, CodeOffset)>,
214
215    /// Final length of function body.
216    pub func_body_len: CodeOffset,
217
218    /// The pretty-printed disassembly, if any. This uses the same
219    /// pretty-printing for MachInsts as the pre-regalloc VCode Debug
220    /// implementation, but additionally includes the prologue and
221    /// epilogue(s), and makes use of the regalloc results.
222    pub disasm: Option<String>,
223
224    /// Offsets of sized stackslots.
225    pub sized_stackslot_offsets: PrimaryMap<StackSlot, u32>,
226
227    /// Offsets of dynamic stackslots.
228    pub dynamic_stackslot_offsets: PrimaryMap<DynamicStackSlot, u32>,
229
230    /// Value-labels information (debug metadata).
231    pub value_labels_ranges: ValueLabelsRanges,
232
233    /// Stack frame size.
234    pub frame_size: u32,
235}
236
237/// A builder for a VCode function body.
238///
239/// This builder has the ability to accept instructions in either
240/// forward or reverse order, depending on the pass direction that
241/// produces the VCode. The lowering from CLIF to VCode<MachInst>
242/// ordinarily occurs in reverse order (in order to allow instructions
243/// to be lowered only if used, and not merged) so a reversal will
244/// occur at the end of lowering to ensure the VCode is in machine
245/// order.
246///
247/// If built in reverse, block and instruction indices used once the
248/// VCode is built are relative to the final (reversed) order, not the
249/// order of construction. Note that this means we do not know the
250/// final block or instruction indices when building, so we do not
251/// hand them out. (The user is assumed to know them when appending
252/// terminator instructions with successor blocks.)
253pub struct VCodeBuilder<I: VCodeInst> {
254    /// In-progress VCode.
255    pub(crate) vcode: VCode<I>,
256
257    /// In what direction is the build occurring?
258    direction: VCodeBuildDirection,
259
260    /// Debug-value label in-progress map, keyed by label. For each
261    /// label, we keep disjoint ranges mapping to vregs. We'll flatten
262    /// this into (vreg, range, label) tuples when done.
263    debug_info: FxHashMap<ValueLabel, Vec<(InsnIndex, InsnIndex, VReg)>>,
264}
265
266/// Direction in which a VCodeBuilder builds VCode.
267#[derive(Clone, Copy, Debug, PartialEq, Eq)]
268pub enum VCodeBuildDirection {
269    // TODO: add `Forward` once we need it and can test it adequately.
270    /// Backward-build pass: we expect the producer to call `emit()`
271    /// with instructions in reverse program order within each block.
272    Backward,
273}
274
275impl<I: VCodeInst> VCodeBuilder<I> {
276    /// Create a new VCodeBuilder.
277    pub fn new(
278        sigs: SigSet,
279        abi: Callee<I::ABIMachineSpec>,
280        emit_info: I::Info,
281        block_order: BlockLoweringOrder,
282        constants: VCodeConstants,
283        direction: VCodeBuildDirection,
284    ) -> Self {
285        let vcode = VCode::new(sigs, abi, emit_info, block_order, constants);
286
287        VCodeBuilder {
288            vcode,
289            direction,
290            debug_info: FxHashMap::default(),
291        }
292    }
293
294    pub fn init_retval_area(&mut self, vregs: &mut VRegAllocator<I>) -> CodegenResult<()> {
295        self.vcode.abi.init_retval_area(&self.vcode.sigs, vregs)
296    }
297
298    /// Access the ABI object.
299    pub fn abi(&self) -> &Callee<I::ABIMachineSpec> {
300        &self.vcode.abi
301    }
302
303    /// Access the ABI object.
304    pub fn abi_mut(&mut self) -> &mut Callee<I::ABIMachineSpec> {
305        &mut self.vcode.abi
306    }
307
308    pub fn sigs(&self) -> &SigSet {
309        &self.vcode.sigs
310    }
311
312    pub fn sigs_mut(&mut self) -> &mut SigSet {
313        &mut self.vcode.sigs
314    }
315
316    /// Access to the BlockLoweringOrder object.
317    pub fn block_order(&self) -> &BlockLoweringOrder {
318        &self.vcode.block_order
319    }
320
321    /// Set the current block as the entry block.
322    pub fn set_entry(&mut self, block: BlockIndex) {
323        self.vcode.entry = block;
324    }
325
326    /// End the current basic block. Must be called after emitting vcode insts
327    /// for IR insts and prior to ending the function (building the VCode).
328    pub fn end_bb(&mut self) {
329        let end_idx = self.vcode.insts.len();
330        // Add the instruction index range to the list of blocks.
331        self.vcode.block_ranges.push_end(end_idx);
332        // End the successors list.
333        let succ_end = self.vcode.block_succs.len();
334        self.vcode.block_succ_range.push_end(succ_end);
335        // End the blockparams list.
336        let block_params_end = self.vcode.block_params.len();
337        self.vcode.block_params_range.push_end(block_params_end);
338        // End the branch blockparam args list.
339        let branch_block_arg_succ_end = self.vcode.branch_block_arg_range.len();
340        self.vcode
341            .branch_block_arg_succ_range
342            .push_end(branch_block_arg_succ_end);
343    }
344
345    pub fn add_block_param(&mut self, param: VirtualReg) {
346        self.vcode.block_params.push(param.into());
347    }
348
349    fn add_branch_args_for_succ(&mut self, args: &[Reg]) {
350        self.vcode
351            .branch_block_args
352            .extend(args.iter().map(|&arg| VReg::from(arg)));
353        let end = self.vcode.branch_block_args.len();
354        self.vcode.branch_block_arg_range.push_end(end);
355    }
356
357    /// Push an instruction for the current BB and current IR inst
358    /// within the BB.
359    pub fn push(&mut self, insn: I, loc: RelSourceLoc) {
360        self.vcode.insts.push(insn);
361        self.vcode.srclocs.push(loc);
362    }
363
364    /// Add a successor block with branch args.
365    pub fn add_succ(&mut self, block: BlockIndex, args: &[Reg]) {
366        self.vcode.block_succs.push(block);
367        self.add_branch_args_for_succ(args);
368    }
369
370    /// Add a debug value label to a register.
371    pub fn add_value_label(&mut self, reg: Reg, label: ValueLabel) {
372        // We'll fix up labels in reverse(). Because we're generating
373        // code bottom-to-top, the liverange of the label goes *from*
374        // the last index at which was defined (or 0, which is the end
375        // of the eventual function) *to* just this instruction, and
376        // no further.
377        let inst = InsnIndex::new(self.vcode.insts.len());
378        let labels = self.debug_info.entry(label).or_insert_with(|| vec![]);
379        let last = labels
380            .last()
381            .map(|(_start, end, _vreg)| *end)
382            .unwrap_or(InsnIndex::new(0));
383        labels.push((last, inst, reg.into()));
384    }
385
386    /// Access the constants.
387    pub fn constants(&mut self) -> &mut VCodeConstants {
388        &mut self.vcode.constants
389    }
390
391    fn compute_preds_from_succs(&mut self) {
392        // Do a linear-time counting sort: first determine how many
393        // times each block appears as a successor.
394        let mut starts = vec![0u32; self.vcode.num_blocks()];
395        for succ in &self.vcode.block_succs {
396            starts[succ.index()] += 1;
397        }
398
399        // Determine for each block the starting index where that
400        // block's predecessors should go. This is equivalent to the
401        // ranges we need to store in block_pred_range.
402        self.vcode.block_pred_range.reserve(starts.len());
403        let mut end = 0;
404        for count in starts.iter_mut() {
405            let start = end;
406            end += *count;
407            *count = start;
408            self.vcode.block_pred_range.push_end(end as usize);
409        }
410        let end = end as usize;
411        debug_assert_eq!(end, self.vcode.block_succs.len());
412
413        // Walk over the successors again, this time grouped by
414        // predecessor, and push the predecessor at the current
415        // starting position of each of its successors. We build
416        // each group of predecessors in whatever order Ranges::iter
417        // returns them; regalloc2 doesn't care.
418        self.vcode.block_preds.resize(end, BlockIndex::invalid());
419        for (pred, range) in self.vcode.block_succ_range.iter() {
420            let pred = BlockIndex::new(pred);
421            for succ in &self.vcode.block_succs[range] {
422                let pos = &mut starts[succ.index()];
423                self.vcode.block_preds[*pos as usize] = pred;
424                *pos += 1;
425            }
426        }
427        debug_assert!(self.vcode.block_preds.iter().all(|pred| pred.is_valid()));
428    }
429
430    /// Called once, when a build in Backward order is complete, to
431    /// perform the overall reversal (into final forward order) and
432    /// finalize metadata accordingly.
433    fn reverse_and_finalize(&mut self, vregs: &VRegAllocator<I>) {
434        let n_insts = self.vcode.insts.len();
435        if n_insts == 0 {
436            return;
437        }
438
439        // Reverse the per-block and per-inst sequences.
440        self.vcode.block_ranges.reverse_index();
441        self.vcode.block_ranges.reverse_target(n_insts);
442        // block_params_range is indexed by block (and blocks were
443        // traversed in reverse) so we reverse it; but block-param
444        // sequences in the concatenated vec can remain in reverse
445        // order (it is effectively an arena of arbitrarily-placed
446        // referenced sequences).
447        self.vcode.block_params_range.reverse_index();
448        // Likewise, we reverse block_succ_range, but the block_succ
449        // concatenated array can remain as-is.
450        self.vcode.block_succ_range.reverse_index();
451        self.vcode.insts.reverse();
452        self.vcode.srclocs.reverse();
453        // Likewise, branch_block_arg_succ_range is indexed by block
454        // so must be reversed.
455        self.vcode.branch_block_arg_succ_range.reverse_index();
456
457        // To translate an instruction index *endpoint* in reversed
458        // order to forward order, compute `n_insts - i`.
459        //
460        // Why not `n_insts - 1 - i`? That would be correct to
461        // translate an individual instruction index (for ten insts 0
462        // to 9 inclusive, inst 0 becomes 9, and inst 9 becomes
463        // 0). But for the usual inclusive-start, exclusive-end range
464        // idiom, inclusive starts become exclusive ends and
465        // vice-versa, so e.g. an (inclusive) start of 0 becomes an
466        // (exclusive) end of 10.
467        let translate = |inst: InsnIndex| InsnIndex::new(n_insts - inst.index());
468
469        // Generate debug-value labels based on per-label maps.
470        for (label, tuples) in &self.debug_info {
471            for &(start, end, vreg) in tuples {
472                let vreg = vregs.resolve_vreg_alias(vreg);
473                let fwd_start = translate(end);
474                let fwd_end = translate(start);
475                self.vcode
476                    .debug_value_labels
477                    .push((vreg, fwd_start, fwd_end, label.as_u32()));
478            }
479        }
480
481        // Now sort debug value labels by VReg, as required
482        // by regalloc2.
483        self.vcode
484            .debug_value_labels
485            .sort_unstable_by_key(|(vreg, _, _, _)| *vreg);
486    }
487
488    fn collect_operands(&mut self, vregs: &VRegAllocator<I>) {
489        let allocatable = PRegSet::from(self.vcode.machine_env());
490        for (i, insn) in self.vcode.insts.iter_mut().enumerate() {
491            // Push operands from the instruction onto the operand list.
492            //
493            // We rename through the vreg alias table as we collect
494            // the operands. This is better than a separate post-pass
495            // over operands, because it has more cache locality:
496            // operands only need to pass through L1 once. This is
497            // also better than renaming instructions'
498            // operands/registers while lowering, because here we only
499            // need to do the `match` over the instruction to visit
500            // its register fields (which is slow, branchy code) once.
501
502            let mut op_collector =
503                OperandCollector::new(&mut self.vcode.operands, allocatable, |vreg| {
504                    vregs.resolve_vreg_alias(vreg)
505                });
506            insn.get_operands(&mut op_collector);
507            let (ops, clobbers) = op_collector.finish();
508            self.vcode.operand_ranges.push_end(ops);
509
510            if clobbers != PRegSet::default() {
511                self.vcode.clobbers.insert(InsnIndex::new(i), clobbers);
512            }
513
514            if let Some((dst, src)) = insn.is_move() {
515                // We should never see non-virtual registers present in move
516                // instructions.
517                assert!(
518                    src.is_virtual(),
519                    "the real register {src:?} was used as the source of a move instruction"
520                );
521                assert!(
522                    dst.to_reg().is_virtual(),
523                    "the real register {:?} was used as the destination of a move instruction",
524                    dst.to_reg()
525                );
526            }
527        }
528
529        // Translate blockparam args via the vreg aliases table as well.
530        for arg in &mut self.vcode.branch_block_args {
531            let new_arg = vregs.resolve_vreg_alias(*arg);
532            trace!("operandcollector: block arg {:?} -> {:?}", arg, new_arg);
533            *arg = new_arg;
534        }
535    }
536
537    /// Build the final VCode.
538    pub fn build(mut self, mut vregs: VRegAllocator<I>) -> VCode<I> {
539        self.vcode.vreg_types = take(&mut vregs.vreg_types);
540        self.vcode.facts = take(&mut vregs.facts);
541
542        if self.direction == VCodeBuildDirection::Backward {
543            self.reverse_and_finalize(&vregs);
544        }
545        self.collect_operands(&vregs);
546
547        self.compute_preds_from_succs();
548        self.vcode.debug_value_labels.sort_unstable();
549
550        // At this point, nothing in the vcode should mention any
551        // VReg which has been aliased. All the appropriate rewriting
552        // should have happened above. Just to be sure, let's
553        // double-check each field which has vregs.
554        // Note: can't easily check vcode.insts, resolved in collect_operands.
555        // Operands are resolved in collect_operands.
556        vregs.debug_assert_no_vreg_aliases(self.vcode.operands.iter().map(|op| op.vreg()));
557        // Currently block params are never aliased to another vreg.
558        vregs.debug_assert_no_vreg_aliases(self.vcode.block_params.iter().copied());
559        // Branch block args are resolved in collect_operands.
560        vregs.debug_assert_no_vreg_aliases(self.vcode.branch_block_args.iter().copied());
561        // Debug value labels are resolved in reverse_and_finalize.
562        vregs.debug_assert_no_vreg_aliases(
563            self.vcode.debug_value_labels.iter().map(|&(vreg, ..)| vreg),
564        );
565        // Facts are resolved eagerly during set_vreg_alias.
566        vregs.debug_assert_no_vreg_aliases(
567            self.vcode
568                .facts
569                .iter()
570                .zip(&vregs.vreg_types)
571                .enumerate()
572                .filter(|(_, (fact, _))| fact.is_some())
573                .map(|(vreg, (_, &ty))| {
574                    let (regclasses, _) = I::rc_for_type(ty).unwrap();
575                    VReg::new(vreg, regclasses[0])
576                }),
577        );
578
579        self.vcode
580    }
581
582    /// Add a user stack map for the associated instruction.
583    pub fn add_user_stack_map(
584        &mut self,
585        inst: BackwardsInsnIndex,
586        entries: &[ir::UserStackMapEntry],
587    ) {
588        let stack_map = ir::UserStackMap::new(entries, self.vcode.abi.sized_stackslot_offsets());
589        let old_entry = self.vcode.user_stack_maps.insert(inst, stack_map);
590        debug_assert!(old_entry.is_none());
591    }
592}
593
594const NO_INST_OFFSET: CodeOffset = u32::MAX;
595
596impl<I: VCodeInst> VCode<I> {
597    /// New empty VCode.
598    fn new(
599        sigs: SigSet,
600        abi: Callee<I::ABIMachineSpec>,
601        emit_info: I::Info,
602        block_order: BlockLoweringOrder,
603        constants: VCodeConstants,
604    ) -> Self {
605        let n_blocks = block_order.lowered_order().len();
606        VCode {
607            sigs,
608            vreg_types: vec![],
609            insts: Vec::with_capacity(10 * n_blocks),
610            user_stack_maps: FxHashMap::default(),
611            operands: Vec::with_capacity(30 * n_blocks),
612            operand_ranges: Ranges::with_capacity(10 * n_blocks),
613            clobbers: FxHashMap::default(),
614            srclocs: Vec::with_capacity(10 * n_blocks),
615            entry: BlockIndex::new(0),
616            block_ranges: Ranges::with_capacity(n_blocks),
617            block_succ_range: Ranges::with_capacity(n_blocks),
618            block_succs: Vec::with_capacity(n_blocks),
619            block_pred_range: Ranges::default(),
620            block_preds: Vec::new(),
621            block_params_range: Ranges::with_capacity(n_blocks),
622            block_params: Vec::with_capacity(5 * n_blocks),
623            branch_block_args: Vec::with_capacity(10 * n_blocks),
624            branch_block_arg_range: Ranges::with_capacity(2 * n_blocks),
625            branch_block_arg_succ_range: Ranges::with_capacity(n_blocks),
626            block_order,
627            abi,
628            emit_info,
629            constants,
630            debug_value_labels: vec![],
631            facts: vec![],
632        }
633    }
634
635    /// Get the ABI-dependent MachineEnv for managing register allocation.
636    pub fn machine_env(&self) -> &MachineEnv {
637        self.abi.machine_env(&self.sigs)
638    }
639
640    /// Get the number of blocks. Block indices will be in the range `0 ..
641    /// (self.num_blocks() - 1)`.
642    pub fn num_blocks(&self) -> usize {
643        self.block_ranges.len()
644    }
645
646    /// The number of lowered instructions.
647    pub fn num_insts(&self) -> usize {
648        self.insts.len()
649    }
650
651    fn compute_clobbers(&self, regalloc: &regalloc2::Output) -> Vec<Writable<RealReg>> {
652        let mut clobbered = PRegSet::default();
653
654        // All moves are included in clobbers.
655        for (_, Edit::Move { to, .. }) in &regalloc.edits {
656            if let Some(preg) = to.as_reg() {
657                clobbered.add(preg);
658            }
659        }
660
661        for (i, range) in self.operand_ranges.iter() {
662            // Skip this instruction if not "included in clobbers" as
663            // per the MachInst. (Some backends use this to implement
664            // ABI specifics; e.g., excluding calls of the same ABI as
665            // the current function from clobbers, because by
666            // definition everything clobbered by the call can be
667            // clobbered by this function without saving as well.)
668            if !self.insts[i].is_included_in_clobbers() {
669                continue;
670            }
671
672            let operands = &self.operands[range.clone()];
673            let allocs = &regalloc.allocs[range];
674            for (operand, alloc) in operands.iter().zip(allocs.iter()) {
675                if operand.kind() == OperandKind::Def {
676                    if let Some(preg) = alloc.as_reg() {
677                        clobbered.add(preg);
678                    }
679                }
680            }
681
682            // Also add explicitly-clobbered registers.
683            if let Some(&inst_clobbered) = self.clobbers.get(&InsnIndex::new(i)) {
684                clobbered.union_from(inst_clobbered);
685            }
686        }
687
688        clobbered
689            .into_iter()
690            .map(|preg| Writable::from_reg(RealReg::from(preg)))
691            .collect()
692    }
693
694    /// Emit the instructions to a `MachBuffer`, containing fixed-up
695    /// code and external reloc/trap/etc. records ready for use. Takes
696    /// the regalloc results as well.
697    ///
698    /// Returns the machine code itself, and optionally metadata
699    /// and/or a disassembly, as an `EmitResult`. The `VCode` itself
700    /// is consumed by the emission process.
701    pub fn emit(
702        mut self,
703        regalloc: &regalloc2::Output,
704        want_disasm: bool,
705        flags: &settings::Flags,
706        ctrl_plane: &mut ControlPlane,
707    ) -> EmitResult
708    where
709        I: VCodeInst,
710    {
711        // To write into disasm string.
712        use core::fmt::Write;
713
714        let _tt = timing::vcode_emit();
715        let mut buffer = MachBuffer::new();
716        let mut bb_starts: Vec<Option<CodeOffset>> = vec![];
717
718        // The first M MachLabels are reserved for block indices.
719        buffer.reserve_labels_for_blocks(self.num_blocks());
720
721        // Register all allocated constants with the `MachBuffer` to ensure that
722        // any references to the constants during instructions can be handled
723        // correctly.
724        buffer.register_constants(&self.constants);
725
726        // Construct the final order we emit code in: cold blocks at the end.
727        let mut final_order: SmallVec<[BlockIndex; 16]> = smallvec![];
728        let mut cold_blocks: SmallVec<[BlockIndex; 16]> = smallvec![];
729        for block in 0..self.num_blocks() {
730            let block = BlockIndex::new(block);
731            if self.block_order.is_cold(block) {
732                cold_blocks.push(block);
733            } else {
734                final_order.push(block);
735            }
736        }
737        final_order.extend(cold_blocks.clone());
738
739        // Compute/save info we need for the prologue: clobbers and
740        // number of spillslots.
741        //
742        // We clone `abi` here because we will mutate it as we
743        // generate the prologue and set other info, but we can't
744        // mutate `VCode`. The info it usually carries prior to
745        // setting clobbers is fairly minimal so this should be
746        // relatively cheap.
747        let clobbers = self.compute_clobbers(regalloc);
748        self.abi
749            .compute_frame_layout(&self.sigs, regalloc.num_spillslots, clobbers);
750
751        // Emit blocks.
752        let mut cur_srcloc = None;
753        let mut last_offset = None;
754        let mut inst_offsets = vec![];
755        let mut state = I::State::new(&self.abi, std::mem::take(ctrl_plane));
756
757        let mut disasm = String::new();
758
759        if !self.debug_value_labels.is_empty() {
760            inst_offsets.resize(self.insts.len(), NO_INST_OFFSET);
761        }
762
763        // Count edits per block ahead of time; this is needed for
764        // lookahead island emission. (We could derive it per-block
765        // with binary search in the edit list, but it's more
766        // efficient to do it in one pass here.)
767        let mut ra_edits_per_block: SmallVec<[u32; 64]> = smallvec![];
768        let mut edit_idx = 0;
769        for block in 0..self.num_blocks() {
770            let end_inst = InsnIndex::new(self.block_ranges.get(block).end);
771            let start_edit_idx = edit_idx;
772            while edit_idx < regalloc.edits.len() && regalloc.edits[edit_idx].0.inst() < end_inst {
773                edit_idx += 1;
774            }
775            let end_edit_idx = edit_idx;
776            ra_edits_per_block.push((end_edit_idx - start_edit_idx) as u32);
777        }
778
779        let is_forward_edge_cfi_enabled = self.abi.is_forward_edge_cfi_enabled();
780        let mut bb_padding = match flags.bb_padding_log2_minus_one() {
781            0 => Vec::new(),
782            n => vec![0; 1 << (n - 1)],
783        };
784        let mut total_bb_padding = 0;
785
786        for (block_order_idx, &block) in final_order.iter().enumerate() {
787            trace!("emitting block {:?}", block);
788
789            // Call the new block hook for state
790            state.on_new_block();
791
792            // Emit NOPs to align the block.
793            let new_offset = I::align_basic_block(buffer.cur_offset());
794            while new_offset > buffer.cur_offset() {
795                // Pad with NOPs up to the aligned block offset.
796                let nop = I::gen_nop((new_offset - buffer.cur_offset()) as usize);
797                nop.emit(&mut buffer, &self.emit_info, &mut Default::default());
798            }
799            assert_eq!(buffer.cur_offset(), new_offset);
800
801            let do_emit = |inst: &I,
802                           disasm: &mut String,
803                           buffer: &mut MachBuffer<I>,
804                           state: &mut I::State| {
805                if want_disasm && !inst.is_args() {
806                    let mut s = state.clone();
807                    writeln!(disasm, "  {}", inst.pretty_print_inst(&mut s)).unwrap();
808                }
809                inst.emit(buffer, &self.emit_info, state);
810            };
811
812            // Is this the first block? Emit the prologue directly if so.
813            if block == self.entry {
814                trace!(" -> entry block");
815                buffer.start_srcloc(Default::default());
816                for inst in &self.abi.gen_prologue() {
817                    do_emit(&inst, &mut disasm, &mut buffer, &mut state);
818                }
819                buffer.end_srcloc();
820            }
821
822            // Now emit the regular block body.
823
824            buffer.bind_label(MachLabel::from_block(block), state.ctrl_plane_mut());
825
826            if want_disasm {
827                writeln!(&mut disasm, "block{}:", block.index()).unwrap();
828            }
829
830            if flags.machine_code_cfg_info() {
831                // Track BB starts. If we have backed up due to MachBuffer
832                // branch opts, note that the removed blocks were removed.
833                let cur_offset = buffer.cur_offset();
834                if last_offset.is_some() && cur_offset <= last_offset.unwrap() {
835                    for i in (0..bb_starts.len()).rev() {
836                        if bb_starts[i].is_some() && cur_offset > bb_starts[i].unwrap() {
837                            break;
838                        }
839                        bb_starts[i] = None;
840                    }
841                }
842                bb_starts.push(Some(cur_offset));
843                last_offset = Some(cur_offset);
844            }
845
846            if let Some(block_start) = I::gen_block_start(
847                self.block_order.is_indirect_branch_target(block),
848                is_forward_edge_cfi_enabled,
849            ) {
850                do_emit(&block_start, &mut disasm, &mut buffer, &mut state);
851            }
852
853            for inst_or_edit in regalloc.block_insts_and_edits(&self, block) {
854                match inst_or_edit {
855                    InstOrEdit::Inst(iix) => {
856                        if !self.debug_value_labels.is_empty() {
857                            // If we need to produce debug info,
858                            // record the offset of each instruction
859                            // so that we can translate value-label
860                            // ranges to machine-code offsets.
861
862                            // Cold blocks violate monotonicity
863                            // assumptions elsewhere (that
864                            // instructions in inst-index order are in
865                            // order in machine code), so we omit
866                            // their offsets here. Value-label range
867                            // generation below will skip empty ranges
868                            // and ranges with to-offsets of zero.
869                            if !self.block_order.is_cold(block) {
870                                inst_offsets[iix.index()] = buffer.cur_offset();
871                            }
872                        }
873
874                        // Update the srcloc at this point in the buffer.
875                        let srcloc = self.srclocs[iix.index()];
876                        if cur_srcloc != Some(srcloc) {
877                            if cur_srcloc.is_some() {
878                                buffer.end_srcloc();
879                            }
880                            buffer.start_srcloc(srcloc);
881                            cur_srcloc = Some(srcloc);
882                        }
883
884                        // If this is a safepoint, compute a stack map
885                        // and pass it to the emit state.
886                        let stack_map_disasm = if self.insts[iix.index()].is_safepoint() {
887                            let (user_stack_map, user_stack_map_disasm) = {
888                                // The `user_stack_maps` is keyed by reverse
889                                // instruction index, so we must flip the
890                                // index. We can't put this into a helper method
891                                // due to borrowck issues because parts of
892                                // `self` are borrowed mutably elsewhere in this
893                                // function.
894                                let index = iix.to_backwards_insn_index(self.num_insts());
895                                let user_stack_map = self.user_stack_maps.remove(&index);
896                                let user_stack_map_disasm =
897                                    user_stack_map.as_ref().map(|m| format!("  ; {m:?}"));
898                                (user_stack_map, user_stack_map_disasm)
899                            };
900
901                            state.pre_safepoint(user_stack_map);
902
903                            user_stack_map_disasm
904                        } else {
905                            None
906                        };
907
908                        // If the instruction we are about to emit is
909                        // a return, place an epilogue at this point
910                        // (and don't emit the return; the actual
911                        // epilogue will contain it).
912                        if self.insts[iix.index()].is_term() == MachTerminator::Ret {
913                            for inst in self.abi.gen_epilogue() {
914                                do_emit(&inst, &mut disasm, &mut buffer, &mut state);
915                            }
916                        } else {
917                            // Update the operands for this inst using the
918                            // allocations from the regalloc result.
919                            let mut allocs = regalloc.inst_allocs(iix).iter();
920                            self.insts[iix.index()].get_operands(
921                                &mut |reg: &mut Reg, constraint, _kind, _pos| {
922                                    let alloc = allocs
923                                        .next()
924                                        .expect("enough allocations for all operands")
925                                        .as_reg()
926                                        .expect("only register allocations, not stack allocations")
927                                        .into();
928
929                                    if let OperandConstraint::FixedReg(rreg) = constraint {
930                                        debug_assert_eq!(Reg::from(rreg), alloc);
931                                    }
932                                    *reg = alloc;
933                                },
934                            );
935                            debug_assert!(allocs.next().is_none());
936
937                            // Emit the instruction!
938                            do_emit(
939                                &self.insts[iix.index()],
940                                &mut disasm,
941                                &mut buffer,
942                                &mut state,
943                            );
944                            if let Some(stack_map_disasm) = stack_map_disasm {
945                                disasm.push_str(&stack_map_disasm);
946                                disasm.push('\n');
947                            }
948                        }
949                    }
950
951                    InstOrEdit::Edit(Edit::Move { from, to }) => {
952                        // Create a move/spill/reload instruction and
953                        // immediately emit it.
954                        match (from.as_reg(), to.as_reg()) {
955                            (Some(from), Some(to)) => {
956                                // Reg-to-reg move.
957                                let from_rreg = Reg::from(from);
958                                let to_rreg = Writable::from_reg(Reg::from(to));
959                                debug_assert_eq!(from.class(), to.class());
960                                let ty = I::canonical_type_for_rc(from.class());
961                                let mv = I::gen_move(to_rreg, from_rreg, ty);
962                                do_emit(&mv, &mut disasm, &mut buffer, &mut state);
963                            }
964                            (Some(from), None) => {
965                                // Spill from register to spillslot.
966                                let to = to.as_stack().unwrap();
967                                let from_rreg = RealReg::from(from);
968                                let spill = self.abi.gen_spill(to, from_rreg);
969                                do_emit(&spill, &mut disasm, &mut buffer, &mut state);
970                            }
971                            (None, Some(to)) => {
972                                // Load from spillslot to register.
973                                let from = from.as_stack().unwrap();
974                                let to_rreg = Writable::from_reg(RealReg::from(to));
975                                let reload = self.abi.gen_reload(to_rreg, from);
976                                do_emit(&reload, &mut disasm, &mut buffer, &mut state);
977                            }
978                            (None, None) => {
979                                panic!("regalloc2 should have eliminated stack-to-stack moves!");
980                            }
981                        }
982                    }
983                }
984            }
985
986            if cur_srcloc.is_some() {
987                buffer.end_srcloc();
988                cur_srcloc = None;
989            }
990
991            // Do we need an island? Get the worst-case size of the next BB, add
992            // it to the optional padding behind the block, and pass this to the
993            // `MachBuffer` to determine if an island is necessary.
994            let worst_case_next_bb = if block_order_idx < final_order.len() - 1 {
995                let next_block = final_order[block_order_idx + 1];
996                let next_block_range = self.block_ranges.get(next_block.index());
997                let next_block_size = next_block_range.len() as u32;
998                let next_block_ra_insertions = ra_edits_per_block[next_block.index()];
999                I::worst_case_size() * (next_block_size + next_block_ra_insertions)
1000            } else {
1001                0
1002            };
1003            let padding = if bb_padding.is_empty() {
1004                0
1005            } else {
1006                bb_padding.len() as u32 + I::LabelUse::ALIGN - 1
1007            };
1008            if buffer.island_needed(padding + worst_case_next_bb) {
1009                buffer.emit_island(padding + worst_case_next_bb, ctrl_plane);
1010            }
1011
1012            // Insert padding, if configured, to stress the `MachBuffer`'s
1013            // relocation and island calculations.
1014            //
1015            // Padding can get quite large during fuzzing though so place a
1016            // total cap on it where when a per-function threshold is exceeded
1017            // the padding is turned back down to zero. This avoids a small-ish
1018            // test case generating a GB+ memory footprint in Cranelift for
1019            // example.
1020            if !bb_padding.is_empty() {
1021                buffer.put_data(&bb_padding);
1022                buffer.align_to(I::LabelUse::ALIGN);
1023                total_bb_padding += bb_padding.len();
1024                if total_bb_padding > (150 << 20) {
1025                    bb_padding = Vec::new();
1026                }
1027            }
1028        }
1029
1030        debug_assert!(
1031            self.user_stack_maps.is_empty(),
1032            "any stack maps should have been consumed by instruction emission, still have: {:#?}",
1033            self.user_stack_maps,
1034        );
1035
1036        // Do any optimizations on branches at tail of buffer, as if we had
1037        // bound one last label.
1038        buffer.optimize_branches(ctrl_plane);
1039
1040        // emission state is not needed anymore, move control plane back out
1041        *ctrl_plane = state.take_ctrl_plane();
1042
1043        let func_body_len = buffer.cur_offset();
1044
1045        // Create `bb_edges` and final (filtered) `bb_starts`.
1046        let mut bb_edges = vec![];
1047        let mut bb_offsets = vec![];
1048        if flags.machine_code_cfg_info() {
1049            for block in 0..self.num_blocks() {
1050                if bb_starts[block].is_none() {
1051                    // Block was deleted by MachBuffer; skip.
1052                    continue;
1053                }
1054                let from = bb_starts[block].unwrap();
1055
1056                bb_offsets.push(from);
1057                // Resolve each `succ` label and add edges.
1058                let succs = self.block_succs(BlockIndex::new(block));
1059                for &succ in succs.iter() {
1060                    let to = buffer.resolve_label_offset(MachLabel::from_block(succ));
1061                    bb_edges.push((from, to));
1062                }
1063            }
1064        }
1065
1066        self.monotonize_inst_offsets(&mut inst_offsets[..], func_body_len);
1067        let value_labels_ranges =
1068            self.compute_value_labels_ranges(regalloc, &inst_offsets[..], func_body_len);
1069        let frame_size = self.abi.frame_size();
1070
1071        EmitResult {
1072            buffer: buffer.finish(&self.constants, ctrl_plane),
1073            bb_offsets,
1074            bb_edges,
1075            func_body_len,
1076            disasm: if want_disasm { Some(disasm) } else { None },
1077            sized_stackslot_offsets: self.abi.sized_stackslot_offsets().clone(),
1078            dynamic_stackslot_offsets: self.abi.dynamic_stackslot_offsets().clone(),
1079            value_labels_ranges,
1080            frame_size,
1081        }
1082    }
1083
1084    fn monotonize_inst_offsets(&self, inst_offsets: &mut [CodeOffset], func_body_len: u32) {
1085        if self.debug_value_labels.is_empty() {
1086            return;
1087        }
1088
1089        // During emission, branch removal can make offsets of instructions incorrect.
1090        // Consider the following sequence: [insi][jmp0][jmp1][jmp2][insj]
1091        // It will be recorded as (say):    [30]  [34]  [38]  [42]  [<would be 46>]
1092        // When the jumps get removed we are left with (in "inst_offsets"):
1093        // [insi][jmp0][jmp1][jmp2][insj][...]
1094        // [30]  [34]  [38]  [42]  [34]
1095        // Which violates the monotonicity invariant. This method sets offsets of these
1096        // removed instructions such as to make them appear zero-sized:
1097        // [insi][jmp0][jmp1][jmp2][insj][...]
1098        // [30]  [34]  [34]  [34]  [34]
1099        //
1100        let mut next_offset = func_body_len;
1101        for inst_index in (0..(inst_offsets.len() - 1)).rev() {
1102            let inst_offset = inst_offsets[inst_index];
1103
1104            // Not all instructions get their offsets recorded.
1105            if inst_offset == NO_INST_OFFSET {
1106                continue;
1107            }
1108
1109            if inst_offset > next_offset {
1110                trace!(
1111                    "Fixing code offset of the removed Inst {}: {} -> {}",
1112                    inst_index,
1113                    inst_offset,
1114                    next_offset
1115                );
1116                inst_offsets[inst_index] = next_offset;
1117                continue;
1118            }
1119
1120            next_offset = inst_offset;
1121        }
1122    }
1123
1124    fn compute_value_labels_ranges(
1125        &self,
1126        regalloc: &regalloc2::Output,
1127        inst_offsets: &[CodeOffset],
1128        func_body_len: u32,
1129    ) -> ValueLabelsRanges {
1130        if self.debug_value_labels.is_empty() {
1131            return ValueLabelsRanges::default();
1132        }
1133
1134        let mut value_labels_ranges: ValueLabelsRanges = HashMap::new();
1135        for &(label, from, to, alloc) in &regalloc.debug_locations {
1136            let ranges = value_labels_ranges
1137                .entry(ValueLabel::from_u32(label))
1138                .or_insert_with(|| vec![]);
1139            let from_offset = inst_offsets[from.inst().index()];
1140            let to_offset = if to.inst().index() == inst_offsets.len() {
1141                func_body_len
1142            } else {
1143                inst_offsets[to.inst().index()]
1144            };
1145
1146            // Empty ranges or unavailable offsets can happen
1147            // due to cold blocks and branch removal (see above).
1148            if from_offset == NO_INST_OFFSET
1149                || to_offset == NO_INST_OFFSET
1150                || from_offset == to_offset
1151            {
1152                continue;
1153            }
1154
1155            let loc = if let Some(preg) = alloc.as_reg() {
1156                LabelValueLoc::Reg(Reg::from(preg))
1157            } else {
1158                let slot = alloc.as_stack().unwrap();
1159                let slot_offset = self.abi.get_spillslot_offset(slot);
1160                let slot_base_to_caller_sp_offset = self.abi.slot_base_to_caller_sp_offset();
1161                let caller_sp_to_cfa_offset =
1162                    crate::isa::unwind::systemv::caller_sp_to_cfa_offset();
1163                // NOTE: this is a negative offset because it's relative to the caller's SP
1164                let cfa_to_sp_offset =
1165                    -((slot_base_to_caller_sp_offset + caller_sp_to_cfa_offset) as i64);
1166                LabelValueLoc::CFAOffset(cfa_to_sp_offset + slot_offset)
1167            };
1168
1169            // ValueLocRanges are recorded by *instruction-end
1170            // offset*. `from_offset` is the *start* of the
1171            // instruction; that is the same as the end of another
1172            // instruction, so we only want to begin coverage once
1173            // we are past the previous instruction's end.
1174            let start = from_offset + 1;
1175
1176            // Likewise, `end` is exclusive, but we want to
1177            // *include* the end of the last
1178            // instruction. `to_offset` is the start of the
1179            // `to`-instruction, which is the exclusive end, i.e.,
1180            // the first instruction not covered. That
1181            // instruction's start is the same as the end of the
1182            // last instruction that is included, so we go one
1183            // byte further to be sure to include it.
1184            let end = to_offset + 1;
1185
1186            // Coalesce adjacent ranges that for the same location
1187            // to minimize output size here and for the consumers.
1188            if let Some(last_loc_range) = ranges.last_mut() {
1189                if last_loc_range.loc == loc && last_loc_range.end == start {
1190                    trace!(
1191                        "Extending debug range for VL{} in {:?} to {}",
1192                        label,
1193                        loc,
1194                        end
1195                    );
1196                    last_loc_range.end = end;
1197                    continue;
1198                }
1199            }
1200
1201            trace!(
1202                "Recording debug range for VL{} in {:?}: [Inst {}..Inst {}) [{}..{})",
1203                label,
1204                loc,
1205                from.inst().index(),
1206                to.inst().index(),
1207                start,
1208                end
1209            );
1210
1211            ranges.push(ValueLocRange { loc, start, end });
1212        }
1213
1214        value_labels_ranges
1215    }
1216
1217    /// Get the IR block for a BlockIndex, if one exists.
1218    pub fn bindex_to_bb(&self, block: BlockIndex) -> Option<ir::Block> {
1219        self.block_order.lowered_order()[block.index()].orig_block()
1220    }
1221
1222    /// Get the type of a VReg.
1223    pub fn vreg_type(&self, vreg: VReg) -> Type {
1224        self.vreg_types[vreg.vreg()]
1225    }
1226
1227    /// Get the fact, if any, for a given VReg.
1228    pub fn vreg_fact(&self, vreg: VReg) -> Option<&Fact> {
1229        self.facts[vreg.vreg()].as_ref()
1230    }
1231
1232    /// Set the fact for a given VReg.
1233    pub fn set_vreg_fact(&mut self, vreg: VReg, fact: Fact) {
1234        trace!("set fact on {}: {:?}", vreg, fact);
1235        self.facts[vreg.vreg()] = Some(fact);
1236    }
1237
1238    /// Does a given instruction define any facts?
1239    pub fn inst_defines_facts(&self, inst: InsnIndex) -> bool {
1240        self.inst_operands(inst)
1241            .iter()
1242            .filter(|o| o.kind() == OperandKind::Def)
1243            .map(|o| o.vreg())
1244            .any(|vreg| self.facts[vreg.vreg()].is_some())
1245    }
1246
1247    /// Get the user stack map associated with the given forward instruction index.
1248    pub fn get_user_stack_map(&self, inst: InsnIndex) -> Option<&ir::UserStackMap> {
1249        let index = inst.to_backwards_insn_index(self.num_insts());
1250        self.user_stack_maps.get(&index)
1251    }
1252}
1253
1254impl<I: VCodeInst> std::ops::Index<InsnIndex> for VCode<I> {
1255    type Output = I;
1256    fn index(&self, idx: InsnIndex) -> &Self::Output {
1257        &self.insts[idx.index()]
1258    }
1259}
1260
1261impl<I: VCodeInst> RegallocFunction for VCode<I> {
1262    fn num_insts(&self) -> usize {
1263        self.insts.len()
1264    }
1265
1266    fn num_blocks(&self) -> usize {
1267        self.block_ranges.len()
1268    }
1269
1270    fn entry_block(&self) -> BlockIndex {
1271        self.entry
1272    }
1273
1274    fn block_insns(&self, block: BlockIndex) -> InstRange {
1275        let range = self.block_ranges.get(block.index());
1276        InstRange::new(InsnIndex::new(range.start), InsnIndex::new(range.end))
1277    }
1278
1279    fn block_succs(&self, block: BlockIndex) -> &[BlockIndex] {
1280        let range = self.block_succ_range.get(block.index());
1281        &self.block_succs[range]
1282    }
1283
1284    fn block_preds(&self, block: BlockIndex) -> &[BlockIndex] {
1285        let range = self.block_pred_range.get(block.index());
1286        &self.block_preds[range]
1287    }
1288
1289    fn block_params(&self, block: BlockIndex) -> &[VReg] {
1290        // As a special case we don't return block params for the entry block, as all the arguments
1291        // will be defined by the `Inst::Args` instruction.
1292        if block == self.entry {
1293            return &[];
1294        }
1295
1296        let range = self.block_params_range.get(block.index());
1297        &self.block_params[range]
1298    }
1299
1300    fn branch_blockparams(&self, block: BlockIndex, _insn: InsnIndex, succ_idx: usize) -> &[VReg] {
1301        let succ_range = self.branch_block_arg_succ_range.get(block.index());
1302        debug_assert!(succ_idx < succ_range.len());
1303        let branch_block_args = self.branch_block_arg_range.get(succ_range.start + succ_idx);
1304        &self.branch_block_args[branch_block_args]
1305    }
1306
1307    fn is_ret(&self, insn: InsnIndex) -> bool {
1308        match self.insts[insn.index()].is_term() {
1309            // We treat blocks terminated by an unconditional trap like a return for regalloc.
1310            MachTerminator::None => self.insts[insn.index()].is_trap(),
1311            MachTerminator::Ret | MachTerminator::RetCall => true,
1312            MachTerminator::Uncond | MachTerminator::Cond | MachTerminator::Indirect => false,
1313        }
1314    }
1315
1316    fn is_branch(&self, insn: InsnIndex) -> bool {
1317        match self.insts[insn.index()].is_term() {
1318            MachTerminator::Cond | MachTerminator::Uncond | MachTerminator::Indirect => true,
1319            _ => false,
1320        }
1321    }
1322
1323    fn inst_operands(&self, insn: InsnIndex) -> &[Operand] {
1324        let range = self.operand_ranges.get(insn.index());
1325        &self.operands[range]
1326    }
1327
1328    fn inst_clobbers(&self, insn: InsnIndex) -> PRegSet {
1329        self.clobbers.get(&insn).cloned().unwrap_or_default()
1330    }
1331
1332    fn num_vregs(&self) -> usize {
1333        self.vreg_types.len()
1334    }
1335
1336    fn debug_value_labels(&self) -> &[(VReg, InsnIndex, InsnIndex, u32)] {
1337        &self.debug_value_labels
1338    }
1339
1340    fn spillslot_size(&self, regclass: RegClass) -> usize {
1341        self.abi.get_spillslot_size(regclass) as usize
1342    }
1343
1344    fn allow_multiple_vreg_defs(&self) -> bool {
1345        // At least the s390x backend requires this, because the
1346        // `Loop` pseudo-instruction aggregates all Operands so pinned
1347        // vregs (RealRegs) may occur more than once.
1348        true
1349    }
1350}
1351
1352impl<I: VCodeInst> Debug for VRegAllocator<I> {
1353    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1354        writeln!(f, "VRegAllocator {{")?;
1355
1356        let mut alias_keys = self.vreg_aliases.keys().cloned().collect::<Vec<_>>();
1357        alias_keys.sort_unstable();
1358        for key in alias_keys {
1359            let dest = self.vreg_aliases.get(&key).unwrap();
1360            writeln!(f, "  {:?} := {:?}", Reg::from(key), Reg::from(*dest))?;
1361        }
1362
1363        for (vreg, fact) in self.facts.iter().enumerate() {
1364            if let Some(fact) = fact {
1365                writeln!(f, "  v{vreg} ! {fact}")?;
1366            }
1367        }
1368
1369        writeln!(f, "}}")
1370    }
1371}
1372
1373impl<I: VCodeInst> fmt::Debug for VCode<I> {
1374    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1375        writeln!(f, "VCode {{")?;
1376        writeln!(f, "  Entry block: {}", self.entry.index())?;
1377
1378        let mut state = Default::default();
1379
1380        for block in 0..self.num_blocks() {
1381            let block = BlockIndex::new(block);
1382            writeln!(
1383                f,
1384                "Block {}({:?}):",
1385                block.index(),
1386                self.block_params(block)
1387            )?;
1388            if let Some(bb) = self.bindex_to_bb(block) {
1389                writeln!(f, "    (original IR block: {bb})")?;
1390            }
1391            for (succ_idx, succ) in self.block_succs(block).iter().enumerate() {
1392                writeln!(
1393                    f,
1394                    "    (successor: Block {}({:?}))",
1395                    succ.index(),
1396                    self.branch_blockparams(block, InsnIndex::new(0) /* dummy */, succ_idx)
1397                )?;
1398            }
1399            for inst in self.block_ranges.get(block.index()) {
1400                writeln!(
1401                    f,
1402                    "  Inst {}: {}",
1403                    inst,
1404                    self.insts[inst].pretty_print_inst(&mut state)
1405                )?;
1406                if !self.operands.is_empty() {
1407                    for operand in self.inst_operands(InsnIndex::new(inst)) {
1408                        if operand.kind() == OperandKind::Def {
1409                            if let Some(fact) = &self.facts[operand.vreg().vreg()] {
1410                                writeln!(f, "    v{} ! {}", operand.vreg().vreg(), fact)?;
1411                            }
1412                        }
1413                    }
1414                }
1415                if let Some(user_stack_map) = self.get_user_stack_map(InsnIndex::new(inst)) {
1416                    writeln!(f, "    {user_stack_map:?}")?;
1417                }
1418            }
1419        }
1420
1421        writeln!(f, "}}")?;
1422        Ok(())
1423    }
1424}
1425
1426/// This structure manages VReg allocation during the lifetime of the VCodeBuilder.
1427pub struct VRegAllocator<I> {
1428    /// VReg IR-level types.
1429    vreg_types: Vec<Type>,
1430
1431    /// VReg aliases. When the final VCode is built we rewrite all
1432    /// uses of the keys in this table to their replacement values.
1433    ///
1434    /// We use these aliases to rename an instruction's expected
1435    /// result vregs to the returned vregs from lowering, which are
1436    /// usually freshly-allocated temps.
1437    vreg_aliases: FxHashMap<regalloc2::VReg, regalloc2::VReg>,
1438
1439    /// A deferred error, to be bubbled up to the top level of the
1440    /// lowering algorithm. We take this approach because we cannot
1441    /// currently propagate a `Result` upward through ISLE code (the
1442    /// lowering rules) or some ABI code.
1443    deferred_error: Option<CodegenError>,
1444
1445    /// Facts on VRegs, for proof-carrying code.
1446    facts: Vec<Option<Fact>>,
1447
1448    /// The type of instruction that this allocator makes registers for.
1449    _inst: core::marker::PhantomData<I>,
1450}
1451
1452impl<I: VCodeInst> VRegAllocator<I> {
1453    /// Make a new VRegAllocator.
1454    pub fn with_capacity(capacity: usize) -> Self {
1455        let capacity = first_user_vreg_index() + capacity;
1456        let mut vreg_types = Vec::with_capacity(capacity);
1457        vreg_types.resize(first_user_vreg_index(), types::INVALID);
1458        Self {
1459            vreg_types,
1460            vreg_aliases: FxHashMap::with_capacity_and_hasher(capacity, Default::default()),
1461            deferred_error: None,
1462            facts: Vec::with_capacity(capacity),
1463            _inst: core::marker::PhantomData::default(),
1464        }
1465    }
1466
1467    /// Allocate a fresh ValueRegs.
1468    pub fn alloc(&mut self, ty: Type) -> CodegenResult<ValueRegs<Reg>> {
1469        if self.deferred_error.is_some() {
1470            return Err(CodegenError::CodeTooLarge);
1471        }
1472        let v = self.vreg_types.len();
1473        let (regclasses, tys) = I::rc_for_type(ty)?;
1474        if v + regclasses.len() >= VReg::MAX {
1475            return Err(CodegenError::CodeTooLarge);
1476        }
1477
1478        let regs: ValueRegs<Reg> = match regclasses {
1479            &[rc0] => ValueRegs::one(VReg::new(v, rc0).into()),
1480            &[rc0, rc1] => ValueRegs::two(VReg::new(v, rc0).into(), VReg::new(v + 1, rc1).into()),
1481            // We can extend this if/when we support 32-bit targets; e.g.,
1482            // an i128 on a 32-bit machine will need up to four machine regs
1483            // for a `Value`.
1484            _ => panic!("Value must reside in 1 or 2 registers"),
1485        };
1486        for (&reg_ty, &reg) in tys.iter().zip(regs.regs().iter()) {
1487            let vreg = reg.to_virtual_reg().unwrap();
1488            debug_assert_eq!(self.vreg_types.len(), vreg.index());
1489            self.vreg_types.push(reg_ty);
1490        }
1491
1492        // Create empty facts for each allocated vreg.
1493        self.facts.resize(self.vreg_types.len(), None);
1494
1495        Ok(regs)
1496    }
1497
1498    /// Allocate a fresh ValueRegs, deferring any out-of-vregs
1499    /// errors. This is useful in places where we cannot bubble a
1500    /// `CodegenResult` upward easily, and which are known to be
1501    /// invoked from within the lowering loop that checks the deferred
1502    /// error status below.
1503    pub fn alloc_with_deferred_error(&mut self, ty: Type) -> ValueRegs<Reg> {
1504        match self.alloc(ty) {
1505            Ok(x) => x,
1506            Err(e) => {
1507                self.deferred_error = Some(e);
1508                self.bogus_for_deferred_error(ty)
1509            }
1510        }
1511    }
1512
1513    /// Take any deferred error that was accumulated by `alloc_with_deferred_error`.
1514    pub fn take_deferred_error(&mut self) -> Option<CodegenError> {
1515        self.deferred_error.take()
1516    }
1517
1518    /// Produce an bogus VReg placeholder with the proper number of
1519    /// registers for the given type. This is meant to be used with
1520    /// deferred allocation errors (see `Lower::alloc_tmp()`).
1521    fn bogus_for_deferred_error(&self, ty: Type) -> ValueRegs<Reg> {
1522        let (regclasses, _tys) = I::rc_for_type(ty).expect("must have valid type");
1523        match regclasses {
1524            &[rc0] => ValueRegs::one(VReg::new(0, rc0).into()),
1525            &[rc0, rc1] => ValueRegs::two(VReg::new(0, rc0).into(), VReg::new(1, rc1).into()),
1526            _ => panic!("Value must reside in 1 or 2 registers"),
1527        }
1528    }
1529
1530    /// Rewrite any mention of `from` into `to`.
1531    pub fn set_vreg_alias(&mut self, from: Reg, to: Reg) {
1532        let from = from.into();
1533        let resolved_to = self.resolve_vreg_alias(to.into());
1534        // Disallow cycles (see below).
1535        assert_ne!(resolved_to, from);
1536
1537        // Maintain the invariant that PCC facts only exist on vregs
1538        // which aren't aliases. We want to preserve whatever was
1539        // stated about the vreg before its producer was lowered.
1540        if let Some(fact) = self.facts[from.vreg()].take() {
1541            self.set_fact(resolved_to, fact);
1542        }
1543
1544        let old_alias = self.vreg_aliases.insert(from, resolved_to);
1545        debug_assert_eq!(old_alias, None);
1546    }
1547
1548    fn resolve_vreg_alias(&self, mut vreg: regalloc2::VReg) -> regalloc2::VReg {
1549        // We prevent cycles from existing by resolving targets of
1550        // aliases eagerly before setting them. If the target resolves
1551        // to the origin of the alias, then a cycle would be created
1552        // and the alias is disallowed. Because of the structure of
1553        // SSA code (one instruction can refer to another's defs but
1554        // not vice-versa, except indirectly through
1555        // phis/blockparams), cycles should not occur as we use
1556        // aliases to redirect vregs to the temps that actually define
1557        // them.
1558        while let Some(to) = self.vreg_aliases.get(&vreg) {
1559            vreg = *to;
1560        }
1561        vreg
1562    }
1563
1564    #[inline]
1565    fn debug_assert_no_vreg_aliases(&self, mut list: impl Iterator<Item = VReg>) {
1566        debug_assert!(list.all(|vreg| !self.vreg_aliases.contains_key(&vreg)));
1567    }
1568
1569    /// Set the proof-carrying code fact on a given virtual register.
1570    ///
1571    /// Returns the old fact, if any (only one fact can be stored).
1572    fn set_fact(&mut self, vreg: regalloc2::VReg, fact: Fact) -> Option<Fact> {
1573        trace!("vreg {:?} has fact: {:?}", vreg, fact);
1574        debug_assert!(!self.vreg_aliases.contains_key(&vreg));
1575        self.facts[vreg.vreg()].replace(fact)
1576    }
1577
1578    /// Set a fact only if one doesn't already exist.
1579    pub fn set_fact_if_missing(&mut self, vreg: VirtualReg, fact: Fact) {
1580        let vreg = self.resolve_vreg_alias(vreg.into());
1581        if self.facts[vreg.vreg()].is_none() {
1582            self.set_fact(vreg, fact);
1583        }
1584    }
1585
1586    /// Allocate a fresh ValueRegs, with a given fact to apply if
1587    /// the value fits in one VReg.
1588    pub fn alloc_with_maybe_fact(
1589        &mut self,
1590        ty: Type,
1591        fact: Option<Fact>,
1592    ) -> CodegenResult<ValueRegs<Reg>> {
1593        let result = self.alloc(ty)?;
1594
1595        // Ensure that we don't lose a fact on a value that splits
1596        // into multiple VRegs.
1597        assert!(result.len() == 1 || fact.is_none());
1598        if let Some(fact) = fact {
1599            self.set_fact(result.regs()[0].into(), fact);
1600        }
1601
1602        Ok(result)
1603    }
1604}
1605
1606/// This structure tracks the large constants used in VCode that will be emitted separately by the
1607/// [MachBuffer].
1608///
1609/// First, during the lowering phase, constants are inserted using
1610/// [VCodeConstants.insert]; an intermediate handle, `VCodeConstant`, tracks what constants are
1611/// used in this phase. Some deduplication is performed, when possible, as constant
1612/// values are inserted.
1613///
1614/// Secondly, during the emission phase, the [MachBuffer] assigns [MachLabel]s for each of the
1615/// constants so that instructions can refer to the value's memory location. The [MachBuffer]
1616/// then writes the constant values to the buffer.
1617#[derive(Default)]
1618pub struct VCodeConstants {
1619    constants: PrimaryMap<VCodeConstant, VCodeConstantData>,
1620    pool_uses: HashMap<Constant, VCodeConstant>,
1621    well_known_uses: HashMap<*const [u8], VCodeConstant>,
1622    u64s: HashMap<[u8; 8], VCodeConstant>,
1623}
1624impl VCodeConstants {
1625    /// Initialize the structure with the expected number of constants.
1626    pub fn with_capacity(expected_num_constants: usize) -> Self {
1627        Self {
1628            constants: PrimaryMap::with_capacity(expected_num_constants),
1629            pool_uses: HashMap::with_capacity(expected_num_constants),
1630            well_known_uses: HashMap::new(),
1631            u64s: HashMap::new(),
1632        }
1633    }
1634
1635    /// Insert a constant; using this method indicates that a constant value will be used and thus
1636    /// will be emitted to the `MachBuffer`. The current implementation can deduplicate constants
1637    /// that are [VCodeConstantData::Pool] or [VCodeConstantData::WellKnown] but not
1638    /// [VCodeConstantData::Generated].
1639    pub fn insert(&mut self, data: VCodeConstantData) -> VCodeConstant {
1640        match data {
1641            VCodeConstantData::Generated(_) => self.constants.push(data),
1642            VCodeConstantData::Pool(constant, _) => match self.pool_uses.get(&constant) {
1643                None => {
1644                    let vcode_constant = self.constants.push(data);
1645                    self.pool_uses.insert(constant, vcode_constant);
1646                    vcode_constant
1647                }
1648                Some(&vcode_constant) => vcode_constant,
1649            },
1650            VCodeConstantData::WellKnown(data_ref) => {
1651                match self.well_known_uses.entry(data_ref as *const [u8]) {
1652                    Entry::Vacant(v) => {
1653                        let vcode_constant = self.constants.push(data);
1654                        v.insert(vcode_constant);
1655                        vcode_constant
1656                    }
1657                    Entry::Occupied(o) => *o.get(),
1658                }
1659            }
1660            VCodeConstantData::U64(value) => match self.u64s.entry(value) {
1661                Entry::Vacant(v) => {
1662                    let vcode_constant = self.constants.push(data);
1663                    v.insert(vcode_constant);
1664                    vcode_constant
1665                }
1666                Entry::Occupied(o) => *o.get(),
1667            },
1668        }
1669    }
1670
1671    /// Return the number of constants inserted.
1672    pub fn len(&self) -> usize {
1673        self.constants.len()
1674    }
1675
1676    /// Iterate over the `VCodeConstant` keys inserted in this structure.
1677    pub fn keys(&self) -> Keys<VCodeConstant> {
1678        self.constants.keys()
1679    }
1680
1681    /// Iterate over the `VCodeConstant` keys and the data (as a byte slice) inserted in this
1682    /// structure.
1683    pub fn iter(&self) -> impl Iterator<Item = (VCodeConstant, &VCodeConstantData)> {
1684        self.constants.iter()
1685    }
1686
1687    /// Returns the data associated with the specified constant.
1688    pub fn get(&self, c: VCodeConstant) -> &VCodeConstantData {
1689        &self.constants[c]
1690    }
1691
1692    /// Checks if the given [VCodeConstantData] is registered as
1693    /// used by the pool.
1694    pub fn pool_uses(&self, constant: &VCodeConstantData) -> bool {
1695        match constant {
1696            VCodeConstantData::Pool(c, _) => self.pool_uses.contains_key(c),
1697            _ => false,
1698        }
1699    }
1700}
1701
1702/// A use of a constant by one or more VCode instructions; see [VCodeConstants].
1703#[derive(Clone, Copy, Debug, PartialEq, Eq)]
1704pub struct VCodeConstant(u32);
1705entity_impl!(VCodeConstant);
1706
1707/// Identify the different types of constant that can be inserted into [VCodeConstants]. Tracking
1708/// these separately instead of as raw byte buffers allows us to avoid some duplication.
1709pub enum VCodeConstantData {
1710    /// A constant already present in the Cranelift IR
1711    /// [ConstantPool](crate::ir::constant::ConstantPool).
1712    Pool(Constant, ConstantData),
1713    /// A reference to a well-known constant value that is statically encoded within the compiler.
1714    WellKnown(&'static [u8]),
1715    /// A constant value generated during lowering; the value may depend on the instruction context
1716    /// which makes it difficult to de-duplicate--if possible, use other variants.
1717    Generated(ConstantData),
1718    /// A constant of at most 64 bits. These are deduplicated as
1719    /// well. Stored as a fixed-size array of `u8` so that we do not
1720    /// encounter endianness problems when cross-compiling.
1721    U64([u8; 8]),
1722}
1723impl VCodeConstantData {
1724    /// Retrieve the constant data as a byte slice.
1725    pub fn as_slice(&self) -> &[u8] {
1726        match self {
1727            VCodeConstantData::Pool(_, d) | VCodeConstantData::Generated(d) => d.as_slice(),
1728            VCodeConstantData::WellKnown(d) => d,
1729            VCodeConstantData::U64(value) => &value[..],
1730        }
1731    }
1732
1733    /// Calculate the alignment of the constant data.
1734    pub fn alignment(&self) -> u32 {
1735        if self.as_slice().len() <= 8 {
1736            8
1737        } else {
1738            16
1739        }
1740    }
1741}
1742
1743#[cfg(test)]
1744mod test {
1745    use super::*;
1746    use std::mem::size_of;
1747
1748    #[test]
1749    fn size_of_constant_structs() {
1750        assert_eq!(size_of::<Constant>(), 4);
1751        assert_eq!(size_of::<VCodeConstant>(), 4);
1752        assert_eq!(size_of::<ConstantData>(), 24);
1753        assert_eq!(size_of::<VCodeConstantData>(), 32);
1754        assert_eq!(
1755            size_of::<PrimaryMap<VCodeConstant, VCodeConstantData>>(),
1756            24
1757        );
1758        // TODO The VCodeConstants structure's memory size could be further optimized.
1759        // With certain versions of Rust, each `HashMap` in `VCodeConstants` occupied at
1760        // least 48 bytes, making an empty `VCodeConstants` cost 120 bytes.
1761    }
1762}