ed25519_dalek/batch.rs
1// -*- mode: rust; -*-
2//
3// This file is part of ed25519-dalek.
4// Copyright (c) 2017-2019 isis lovecruft
5// See LICENSE for licensing information.
6//
7// Authors:
8// - isis agora lovecruft <isis@patternsinthevoid.net>
9
10//! Batch signature verification.
11
12use alloc::vec::Vec;
13
14use core::iter::once;
15
16use curve25519_dalek::constants;
17use curve25519_dalek::edwards::EdwardsPoint;
18use curve25519_dalek::scalar::Scalar;
19use curve25519_dalek::traits::IsIdentity;
20use curve25519_dalek::traits::VartimeMultiscalarMul;
21
22pub use curve25519_dalek::digest::Digest;
23
24use merlin::Transcript;
25
26use rand_core::RngCore;
27
28use sha2::Sha512;
29
30use crate::errors::InternalError;
31use crate::errors::SignatureError;
32use crate::signature::InternalSignature;
33use crate::VerifyingKey;
34
35/// An implementation of `rand_core::RngCore` which does nothing. This is necessary because merlin
36/// demands an `Rng` as input to `TranscriptRngBuilder::finalize()`. Using this with `finalize()`
37/// yields a PRG whose input is the hashed transcript.
38struct ZeroRng;
39
40impl rand_core::RngCore for ZeroRng {
41 fn next_u32(&mut self) -> u32 {
42 rand_core::impls::next_u32_via_fill(self)
43 }
44
45 fn next_u64(&mut self) -> u64 {
46 rand_core::impls::next_u64_via_fill(self)
47 }
48
49 /// A no-op function which leaves the destination bytes for randomness unchanged.
50 ///
51 /// In this case, the internal merlin code is initialising the destination
52 /// by doing `[0u8; …]`, which means that when we call
53 /// `merlin::TranscriptRngBuilder.finalize()`, rather than rekeying the
54 /// STROBE state based on external randomness, we're doing an
55 /// `ENC_{state}(00000000000000000000000000000000)` operation, which is
56 /// identical to the STROBE `MAC` operation.
57 fn fill_bytes(&mut self, _dest: &mut [u8]) {}
58
59 fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> {
60 self.fill_bytes(dest);
61 Ok(())
62 }
63}
64
65// `TranscriptRngBuilder::finalize()` requires a `CryptoRng`
66impl rand_core::CryptoRng for ZeroRng {}
67
68// We write our own gen() function so we don't need to pull in the rand crate
69fn gen_u128<R: RngCore>(rng: &mut R) -> u128 {
70 let mut buf = [0u8; 16];
71 rng.fill_bytes(&mut buf);
72 u128::from_le_bytes(buf)
73}
74
75/// Verify a batch of `signatures` on `messages` with their respective `verifying_keys`.
76///
77/// # Inputs
78///
79/// * `messages` is a slice of byte slices, one per signed message.
80/// * `signatures` is a slice of `Signature`s.
81/// * `verifying_keys` is a slice of `VerifyingKey`s.
82///
83/// # Returns
84///
85/// * A `Result` whose `Ok` value is an empty tuple and whose `Err` value is a
86/// `SignatureError` containing a description of the internal error which
87/// occurred.
88///
89/// ## On Deterministic Nonces
90///
91/// The nonces for batch signature verification are derived purely from the inputs to this function
92/// themselves.
93///
94/// In any sigma protocol it is wise to include as much context pertaining
95/// to the public state in the protocol as possible, to avoid malleability
96/// attacks where an adversary alters publics in an algebraic manner that
97/// manages to satisfy the equations for the protocol in question.
98///
99/// For ed25519 batch verification we include the following as scalars in the protocol transcript:
100///
101/// * All of the computed `H(R||A||M)`s to the protocol transcript, and
102/// * All of the `s` components of each signature.
103///
104/// The former, while not quite as elegant as adding the `R`s, `A`s, and
105/// `M`s separately, saves us a bit of context hashing since the
106/// `H(R||A||M)`s need to be computed for the verification equation anyway.
107///
108/// The latter prevents a malleability attack wherein an adversary, without access
109/// to the signing key(s), can take any valid signature, `(s,R)`, and swap
110/// `s` with `s' = -z1`. This doesn't constitute a signature forgery, merely
111/// a vulnerability, as the resulting signature will not pass single
112/// signature verification. (Thanks to Github users @real_or_random and
113/// @jonasnick for pointing out this malleability issue.)
114///
115/// # Examples
116///
117/// ```
118/// use ed25519_dalek::{
119/// verify_batch, SigningKey, VerifyingKey, Signer, Signature,
120/// };
121/// use rand::rngs::OsRng;
122///
123/// # fn main() {
124/// let mut csprng = OsRng;
125/// let signing_keys: Vec<_> = (0..64).map(|_| SigningKey::generate(&mut csprng)).collect();
126/// let msg: &[u8] = b"They're good dogs Brant";
127/// let messages: Vec<_> = (0..64).map(|_| msg).collect();
128/// let signatures: Vec<_> = signing_keys.iter().map(|key| key.sign(&msg)).collect();
129/// let verifying_keys: Vec<_> = signing_keys.iter().map(|key| key.verifying_key()).collect();
130///
131/// let result = verify_batch(&messages, &signatures, &verifying_keys);
132/// assert!(result.is_ok());
133/// # }
134/// ```
135#[allow(non_snake_case)]
136pub fn verify_batch(
137 messages: &[&[u8]],
138 signatures: &[ed25519::Signature],
139 verifying_keys: &[VerifyingKey],
140) -> Result<(), SignatureError> {
141 // Return an Error if any of the vectors were not the same size as the others.
142 if signatures.len() != messages.len()
143 || signatures.len() != verifying_keys.len()
144 || verifying_keys.len() != messages.len()
145 {
146 return Err(InternalError::ArrayLength {
147 name_a: "signatures",
148 length_a: signatures.len(),
149 name_b: "messages",
150 length_b: messages.len(),
151 name_c: "verifying_keys",
152 length_c: verifying_keys.len(),
153 }
154 .into());
155 }
156
157 // Make a transcript which logs all inputs to this function
158 let mut transcript: Transcript = Transcript::new(b"ed25519 batch verification");
159
160 // We make one optimization in the transcript: since we will end up computing H(R || A || M)
161 // for each (R, A, M) triplet, we will feed _that_ into our transcript rather than each R, A, M
162 // individually. Since R and A are fixed-length, this modification is secure so long as SHA-512
163 // is collision-resistant.
164 // It suffices to take `verifying_keys[i].as_bytes()` even though a `VerifyingKey` has two
165 // fields, and `as_bytes()` only returns the bytes of the first. This is because of an
166 // invariant guaranteed by `VerifyingKey`: the second field is always the (unique)
167 // decompression of the first. Thus, the serialized first field is a unique representation of
168 // the entire `VerifyingKey`.
169 let hrams: Vec<[u8; 64]> = (0..signatures.len())
170 .map(|i| {
171 // Compute H(R || A || M), where
172 // R = sig.R
173 // A = verifying key
174 // M = msg
175 let mut h: Sha512 = Sha512::default();
176 h.update(signatures[i].r_bytes());
177 h.update(verifying_keys[i].as_bytes());
178 h.update(messages[i]);
179 *h.finalize().as_ref()
180 })
181 .collect();
182
183 // Update transcript with the hashes above. This covers verifying_keys, messages, and the R
184 // half of signatures
185 for hram in hrams.iter() {
186 transcript.append_message(b"hram", hram);
187 }
188 // Update transcript with the rest of the data. This covers the s half of the signatures
189 for sig in signatures {
190 transcript.append_message(b"sig.s", sig.s_bytes());
191 }
192
193 // All function inputs have now been hashed into the transcript. Finalize it and use it as
194 // randomness for the batch verification.
195 let mut rng = transcript.build_rng().finalize(&mut ZeroRng);
196
197 // Convert all signatures to `InternalSignature`
198 let signatures = signatures
199 .iter()
200 .map(InternalSignature::try_from)
201 .collect::<Result<Vec<_>, _>>()?;
202 // Convert the H(R || A || M) values into scalars
203 let hrams: Vec<Scalar> = hrams
204 .iter()
205 .map(Scalar::from_bytes_mod_order_wide)
206 .collect();
207
208 // Select a random 128-bit scalar for each signature.
209 let zs: Vec<Scalar> = signatures
210 .iter()
211 .map(|_| Scalar::from(gen_u128(&mut rng)))
212 .collect();
213
214 // Compute the basepoint coefficient, ∑ s[i]z[i] (mod l)
215 let B_coefficient: Scalar = signatures
216 .iter()
217 .map(|sig| sig.s)
218 .zip(zs.iter())
219 .map(|(s, z)| z * s)
220 .sum();
221
222 // Multiply each H(R || A || M) by the random value
223 let zhrams = hrams.iter().zip(zs.iter()).map(|(hram, z)| hram * z);
224
225 let Rs = signatures.iter().map(|sig| sig.R.decompress());
226 let As = verifying_keys.iter().map(|pk| Some(pk.point));
227 let B = once(Some(constants::ED25519_BASEPOINT_POINT));
228
229 // Compute (-∑ z[i]s[i] (mod l)) B + ∑ z[i]R[i] + ∑ (z[i]H(R||A||M)[i] (mod l)) A[i] = 0
230 let id = EdwardsPoint::optional_multiscalar_mul(
231 once(-B_coefficient).chain(zs.iter().cloned()).chain(zhrams),
232 B.chain(Rs).chain(As),
233 )
234 .ok_or(InternalError::Verify)?;
235
236 if id.is_identity() {
237 Ok(())
238 } else {
239 Err(InternalError::Verify.into())
240 }
241}