1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
// Copyright (c) Zefchain Labs, Inc.
// SPDX-License-Identifier: Apache-2.0

//! Add LRU (least recently used) caching to a given store.

/// The standard cache size used for tests.
pub const TEST_CACHE_SIZE: usize = 1000;

#[cfg(with_metrics)]
use std::sync::LazyLock;
use std::{
    collections::{btree_map, hash_map::RandomState, BTreeMap},
    sync::{Arc, Mutex},
};

use linked_hash_map::LinkedHashMap;
use serde::{Deserialize, Serialize};
#[cfg(with_metrics)]
use {linera_base::prometheus_util::register_int_counter_vec, prometheus::IntCounterVec};

use crate::{
    batch::{Batch, WriteOperation},
    common::get_interval,
    store::{AdminKeyValueStore, ReadableKeyValueStore, WithError, WritableKeyValueStore},
};
#[cfg(with_testing)]
use crate::{memory::MemoryStore, store::TestKeyValueStore};

#[cfg(with_metrics)]
/// The total number of cache faults
static NUM_CACHE_FAULT: LazyLock<IntCounterVec> =
    LazyLock::new(|| register_int_counter_vec("num_cache_fault", "Number of cache faults", &[]));

#[cfg(with_metrics)]
/// The total number of cache successes
static NUM_CACHE_SUCCESS: LazyLock<IntCounterVec> =
    LazyLock::new(|| register_int_counter_vec("num_cache_success", "Number of cache success", &[]));

/// The `LruPrefixCache` stores the data for simple `read_values` queries
/// It is inspired by the crate `lru-cache`.
///
/// We cannot apply this crate directly because the batch operation
/// need to update the cache. In the case of `DeletePrefix` we have to
/// handle the keys by prefixes. And so we need to have a `BTreeMap` to
/// keep track of this.

/// The data structures
struct LruPrefixCache {
    map: BTreeMap<Vec<u8>, Option<Vec<u8>>>,
    queue: LinkedHashMap<Vec<u8>, (), RandomState>,
    max_cache_size: usize,
}

impl<'a> LruPrefixCache {
    /// Creates an `LruPrefixCache`.
    pub fn new(max_cache_size: usize) -> Self {
        Self {
            map: BTreeMap::new(),
            queue: LinkedHashMap::new(),
            max_cache_size,
        }
    }

    /// Inserts an entry into the cache.
    pub fn insert(&mut self, key: Vec<u8>, value: Option<Vec<u8>>) {
        match self.map.entry(key.clone()) {
            btree_map::Entry::Occupied(mut entry) => {
                entry.insert(value);
                // Put it on first position for LRU
                self.queue.remove(&key);
                self.queue.insert(key, ());
            }
            btree_map::Entry::Vacant(entry) => {
                entry.insert(value);
                self.queue.insert(key, ());
                if self.queue.len() > self.max_cache_size {
                    let Some(value) = self.queue.pop_front() else {
                        unreachable!()
                    };
                    self.map.remove(&value.0);
                }
            }
        }
    }

    /// Marks cached keys that match the prefix as deleted. Importantly, this does not create new entries in the cache.
    pub fn delete_prefix(&mut self, key_prefix: &[u8]) {
        for (_, value) in self.map.range_mut(get_interval(key_prefix.to_vec())) {
            *value = None;
        }
    }

    /// Gets the entry from the key.
    pub fn query(&'a self, key: &'a [u8]) -> Option<&'a Option<Vec<u8>>> {
        self.map.get(key)
    }
}

/// We take a store, a maximum size and build a LRU-based system.
#[derive(Clone)]
pub struct LruCachingStore<K> {
    /// The inner store that is called by the LRU cache one
    store: K,
    lru_read_values: Option<Arc<Mutex<LruPrefixCache>>>,
}

impl<K> WithError for LruCachingStore<K>
where
    K: WithError,
{
    type Error = K::Error;
}

impl<K> ReadableKeyValueStore for LruCachingStore<K>
where
    K: ReadableKeyValueStore + Send + Sync,
{
    // The LRU cache does not change the underlying store's size limits.
    const MAX_KEY_SIZE: usize = K::MAX_KEY_SIZE;
    type Keys = K::Keys;
    type KeyValues = K::KeyValues;

    fn max_stream_queries(&self) -> usize {
        self.store.max_stream_queries()
    }

    async fn read_value_bytes(&self, key: &[u8]) -> Result<Option<Vec<u8>>, Self::Error> {
        let Some(lru_read_values) = &self.lru_read_values else {
            return self.store.read_value_bytes(key).await;
        };
        // First inquiring in the read_value_bytes LRU
        {
            let lru_read_values_container = lru_read_values.lock().unwrap();
            if let Some(value) = lru_read_values_container.query(key) {
                #[cfg(with_metrics)]
                NUM_CACHE_SUCCESS.with_label_values(&[]).inc();
                return Ok(value.clone());
            }
        }
        #[cfg(with_metrics)]
        NUM_CACHE_FAULT.with_label_values(&[]).inc();
        let value = self.store.read_value_bytes(key).await?;
        let mut lru_read_values = lru_read_values.lock().unwrap();
        lru_read_values.insert(key.to_vec(), value.clone());
        Ok(value)
    }

    async fn contains_key(&self, key: &[u8]) -> Result<bool, Self::Error> {
        if let Some(values) = &self.lru_read_values {
            let values = values.lock().unwrap();
            if let Some(value) = values.query(key) {
                return Ok(value.is_some());
            }
        }
        self.store.contains_key(key).await
    }

    async fn contains_keys(&self, keys: Vec<Vec<u8>>) -> Result<Vec<bool>, Self::Error> {
        let Some(values) = &self.lru_read_values else {
            return self.store.contains_keys(keys).await;
        };
        let size = keys.len();
        let mut results = vec![false; size];
        let mut indices = Vec::new();
        let mut key_requests = Vec::new();
        {
            let values = values.lock().unwrap();
            for i in 0..size {
                if let Some(value) = values.query(&keys[i]) {
                    results[i] = value.is_some();
                } else {
                    indices.push(i);
                    key_requests.push(keys[i].clone());
                }
            }
        }
        if !key_requests.is_empty() {
            let key_results = self.store.contains_keys(key_requests).await?;
            for (index, result) in indices.into_iter().zip(key_results) {
                results[index] = result;
            }
        }
        Ok(results)
    }

    async fn read_multi_values_bytes(
        &self,
        keys: Vec<Vec<u8>>,
    ) -> Result<Vec<Option<Vec<u8>>>, Self::Error> {
        let Some(lru_read_values) = &self.lru_read_values else {
            return self.store.read_multi_values_bytes(keys).await;
        };

        let mut result = Vec::with_capacity(keys.len());
        let mut cache_miss_indices = Vec::new();
        let mut miss_keys = Vec::new();
        {
            let lru_read_values_container = lru_read_values.lock().unwrap();
            for (i, key) in keys.into_iter().enumerate() {
                if let Some(value) = lru_read_values_container.query(&key) {
                    #[cfg(with_metrics)]
                    NUM_CACHE_SUCCESS.with_label_values(&[]).inc();
                    result.push(value.clone());
                } else {
                    #[cfg(with_metrics)]
                    NUM_CACHE_FAULT.with_label_values(&[]).inc();
                    result.push(None);
                    cache_miss_indices.push(i);
                    miss_keys.push(key);
                }
            }
        }
        if !miss_keys.is_empty() {
            let values = self
                .store
                .read_multi_values_bytes(miss_keys.clone())
                .await?;
            let mut lru_read_values = lru_read_values.lock().unwrap();
            for (i, (key, value)) in cache_miss_indices
                .into_iter()
                .zip(miss_keys.into_iter().zip(values))
            {
                lru_read_values.insert(key, value.clone());
                result[i] = value;
            }
        }
        Ok(result)
    }

    async fn find_keys_by_prefix(&self, key_prefix: &[u8]) -> Result<Self::Keys, Self::Error> {
        self.store.find_keys_by_prefix(key_prefix).await
    }

    async fn find_key_values_by_prefix(
        &self,
        key_prefix: &[u8],
    ) -> Result<Self::KeyValues, Self::Error> {
        self.store.find_key_values_by_prefix(key_prefix).await
    }
}

impl<K> WritableKeyValueStore for LruCachingStore<K>
where
    K: WritableKeyValueStore + Send + Sync,
{
    // The LRU cache does not change the underlying store's size limits.
    const MAX_VALUE_SIZE: usize = K::MAX_VALUE_SIZE;

    async fn write_batch(&self, batch: Batch) -> Result<(), Self::Error> {
        let Some(lru_read_values) = &self.lru_read_values else {
            return self.store.write_batch(batch).await;
        };

        {
            let mut lru_read_values = lru_read_values.lock().unwrap();
            for operation in &batch.operations {
                match operation {
                    WriteOperation::Put { key, value } => {
                        lru_read_values.insert(key.to_vec(), Some(value.to_vec()));
                    }
                    WriteOperation::Delete { key } => {
                        lru_read_values.insert(key.to_vec(), None);
                    }
                    WriteOperation::DeletePrefix { key_prefix } => {
                        lru_read_values.delete_prefix(key_prefix);
                    }
                }
            }
        }
        self.store.write_batch(batch).await
    }

    async fn clear_journal(&self) -> Result<(), Self::Error> {
        self.store.clear_journal().await
    }
}

/// The configuration type for the `LruCachingStore`.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct LruCachingConfig<C> {
    /// The inner configuration of the `LruCachingStore`.
    pub inner_config: C,
    /// The cache size being used
    pub cache_size: usize,
}

impl<K> AdminKeyValueStore for LruCachingStore<K>
where
    K: AdminKeyValueStore + Send + Sync,
{
    type Config = LruCachingConfig<K::Config>;

    fn get_name() -> String {
        format!("lru caching {}", K::get_name())
    }

    async fn connect(
        config: &Self::Config,
        namespace: &str,
        root_key: &[u8],
    ) -> Result<Self, Self::Error> {
        let store = K::connect(&config.inner_config, namespace, root_key).await?;
        let cache_size = config.cache_size;
        Ok(LruCachingStore::new(store, cache_size))
    }

    fn clone_with_root_key(&self, root_key: &[u8]) -> Result<Self, Self::Error> {
        let store = self.store.clone_with_root_key(root_key)?;
        let cache_size = self.cache_size();
        Ok(LruCachingStore::new(store, cache_size))
    }

    async fn list_all(config: &Self::Config) -> Result<Vec<String>, Self::Error> {
        K::list_all(&config.inner_config).await
    }

    async fn list_root_keys(
        config: &Self::Config,
        namespace: &str,
    ) -> Result<Vec<Vec<u8>>, Self::Error> {
        K::list_root_keys(&config.inner_config, namespace).await
    }

    async fn delete_all(config: &Self::Config) -> Result<(), Self::Error> {
        K::delete_all(&config.inner_config).await
    }

    async fn exists(config: &Self::Config, namespace: &str) -> Result<bool, Self::Error> {
        K::exists(&config.inner_config, namespace).await
    }

    async fn create(config: &Self::Config, namespace: &str) -> Result<(), Self::Error> {
        K::create(&config.inner_config, namespace).await
    }

    async fn delete(config: &Self::Config, namespace: &str) -> Result<(), Self::Error> {
        K::delete(&config.inner_config, namespace).await
    }
}

#[cfg(with_testing)]
impl<K> TestKeyValueStore for LruCachingStore<K>
where
    K: TestKeyValueStore + Send + Sync,
{
    async fn new_test_config() -> Result<LruCachingConfig<K::Config>, K::Error> {
        let inner_config = K::new_test_config().await?;
        let cache_size = TEST_CACHE_SIZE;
        Ok(LruCachingConfig {
            inner_config,
            cache_size,
        })
    }
}

fn new_lru_prefix_cache(cache_size: usize) -> Option<Arc<Mutex<LruPrefixCache>>> {
    if cache_size == 0 {
        None
    } else {
        Some(Arc::new(Mutex::new(LruPrefixCache::new(cache_size))))
    }
}

impl<K> LruCachingStore<K> {
    /// Creates a new key-value store that provides LRU caching at top of the given store.
    pub fn new(store: K, cache_size: usize) -> Self {
        let lru_read_values = new_lru_prefix_cache(cache_size);
        Self {
            store,
            lru_read_values,
        }
    }

    /// Gets the `cache_size`
    pub fn cache_size(&self) -> usize {
        match &self.lru_read_values {
            None => 0,
            Some(lru_read_values) => {
                let lru_read_values = lru_read_values.lock().unwrap();
                lru_read_values.max_cache_size
            }
        }
    }
}

/// A memory store with caching.
#[cfg(with_testing)]
pub type LruCachingMemoryStore = LruCachingStore<MemoryStore>;