1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
// Copyright (c) Zefchain Labs, Inc.
// SPDX-License-Identifier: Apache-2.0

//! Adds metrics to a key-value store.

use std::{
    collections::{btree_map::Entry, BTreeMap},
    sync::{Arc, LazyLock, Mutex},
};

use convert_case::{Case, Casing};
use linera_base::prometheus_util::{
    register_histogram_vec, register_int_counter_vec, MeasureLatency,
};
use prometheus::{HistogramVec, IntCounterVec};

#[cfg(with_testing)]
use crate::store::TestKeyValueStore;
use crate::{
    batch::Batch,
    store::{
        AdminKeyValueStore, KeyIterable as _, KeyValueIterable as _, ReadableKeyValueStore,
        WithError, WritableKeyValueStore,
    },
};

#[derive(Clone)]
/// The implementation of the `KeyValueStoreMetrics` for the `KeyValueStore`.
pub struct KeyValueStoreMetrics {
    read_value_bytes_latency: HistogramVec,
    contains_key_latency: HistogramVec,
    contains_keys_latency: HistogramVec,
    read_multi_values_bytes_latency: HistogramVec,
    find_keys_by_prefix_latency: HistogramVec,
    find_key_values_by_prefix_latency: HistogramVec,
    write_batch_latency: HistogramVec,
    clear_journal_latency: HistogramVec,
    connect_latency: HistogramVec,
    clone_with_root_key_latency: HistogramVec,
    list_all_latency: HistogramVec,
    list_root_keys_latency: HistogramVec,
    delete_all_latency: HistogramVec,
    exists_latency: HistogramVec,
    create_latency: HistogramVec,
    delete_latency: HistogramVec,
    read_value_none_cases: IntCounterVec,
    read_value_key_size: HistogramVec,
    read_value_value_size: HistogramVec,
    read_multi_values_num_entries: HistogramVec,
    read_multi_values_key_sizes: HistogramVec,
    contains_keys_num_entries: HistogramVec,
    contains_keys_key_sizes: HistogramVec,
    contains_key_key_size: HistogramVec,
    find_keys_by_prefix_prefix_size: HistogramVec,
    find_keys_by_prefix_num_keys: HistogramVec,
    find_keys_by_prefix_keys_size: HistogramVec,
    find_key_values_by_prefix_prefix_size: HistogramVec,
    find_key_values_by_prefix_num_keys: HistogramVec,
    find_key_values_by_prefix_key_values_size: HistogramVec,
    write_batch_size: HistogramVec,
    list_all_sizes: HistogramVec,
    exists_true_cases: IntCounterVec,
}

#[derive(Default)]
struct StoreMetrics {
    stores: BTreeMap<String, Arc<KeyValueStoreMetrics>>,
}

/// The global variables of the RocksDB stores
static STORE_COUNTERS: LazyLock<Mutex<StoreMetrics>> =
    LazyLock::new(|| Mutex::new(StoreMetrics::default()));

fn get_counter(name: &str) -> Arc<KeyValueStoreMetrics> {
    let mut store_metrics = STORE_COUNTERS.lock().unwrap();
    let key = name.to_string();
    match store_metrics.stores.entry(key) {
        Entry::Occupied(entry) => {
            let entry = entry.into_mut();
            entry.clone()
        }
        Entry::Vacant(entry) => {
            let store_metric = Arc::new(KeyValueStoreMetrics::new(name.to_string()));
            entry.insert(store_metric.clone());
            store_metric
        }
    }
}

impl KeyValueStoreMetrics {
    /// Creation of a named Metered counter.
    pub fn new(name: String) -> Self {
        // name can be "rocks db". Then var_name = "rocks_db" and title_name = "RocksDb"
        let var_name = name.replace(' ', "_");
        let title_name = name.to_case(Case::Snake);

        let entry1 = format!("{}_read_value_bytes_latency", var_name);
        let entry2 = format!("{} read value bytes latency", title_name);
        let read_value_bytes_latency = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_contains_key_latency", var_name);
        let entry2 = format!("{} contains key latency", title_name);
        let contains_key_latency = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_contains_keys_latency", var_name);
        let entry2 = format!("{} contains keys latency", title_name);
        let contains_keys_latency = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_read_multi_value_bytes_latency", var_name);
        let entry2 = format!("{} read multi value bytes latency", title_name);
        let read_multi_values_bytes_latency = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_find_keys_by_prefix_latency", var_name);
        let entry2 = format!("{} find keys by prefix latency", title_name);
        let find_keys_by_prefix_latency = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_find_key_values_by_prefix_latency", var_name);
        let entry2 = format!("{} find key values by prefix latency", title_name);
        let find_key_values_by_prefix_latency = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_write_batch_latency", var_name);
        let entry2 = format!("{} write batch latency", title_name);
        let write_batch_latency = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_clear_journal_latency", var_name);
        let entry2 = format!("{} clear journal latency", title_name);
        let clear_journal_latency = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_connect_latency", var_name);
        let entry2 = format!("{} connect latency", title_name);
        let connect_latency = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_clone_with_root_key_latency", var_name);
        let entry2 = format!("{} clone with root key latency", title_name);
        let clone_with_root_key_latency = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_list_all_latency", var_name);
        let entry2 = format!("{} list all latency", title_name);
        let list_all_latency = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_list_root_keys_latency", var_name);
        let entry2 = format!("{} list root keys latency", title_name);
        let list_root_keys_latency = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_delete_all_latency", var_name);
        let entry2 = format!("{} delete all latency", title_name);
        let delete_all_latency = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_exists_latency", var_name);
        let entry2 = format!("{} exists latency", title_name);
        let exists_latency = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_create_latency", var_name);
        let entry2 = format!("{} create latency", title_name);
        let create_latency = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_delete_latency", var_name);
        let entry2 = format!("{} delete latency", title_name);
        let delete_latency = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_read_value_none_cases", var_name);
        let entry2 = format!("{} read value none cases", title_name);
        let read_value_none_cases = register_int_counter_vec(&entry1, &entry2, &[]);

        let entry1 = format!("{}_read_value_key_size", var_name);
        let entry2 = format!("{} read value key size", title_name);
        let read_value_key_size = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_read_value_value_size", var_name);
        let entry2 = format!("{} read value value size", title_name);
        let read_value_value_size = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_read_multi_values_num_entries", var_name);
        let entry2 = format!("{} read multi values num entries", title_name);
        let read_multi_values_num_entries = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_read_multi_values_key_sizes", var_name);
        let entry2 = format!("{} read multi values key sizes", title_name);
        let read_multi_values_key_sizes = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_contains_keys_num_entries", var_name);
        let entry2 = format!("{} contains keys num entries", title_name);
        let contains_keys_num_entries = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_contains_keys_key_sizes", var_name);
        let entry2 = format!("{} contains keys key sizes", title_name);
        let contains_keys_key_sizes = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_contains_key_key_size", var_name);
        let entry2 = format!("{} contains key key size", title_name);
        let contains_key_key_size = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_find_keys_by_prefix_prefix_size", var_name);
        let entry2 = format!("{} find keys by prefix prefix size", title_name);
        let find_keys_by_prefix_prefix_size = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_find_keys_by_prefix_num_keys", var_name);
        let entry2 = format!("{} find keys by prefix num keys", title_name);
        let find_keys_by_prefix_num_keys = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_find_keys_by_prefix_keys_size", var_name);
        let entry2 = format!("{} find keys by prefix keys size", title_name);
        let find_keys_by_prefix_keys_size = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_find_key_values_by_prefix_prefix_size", var_name);
        let entry2 = format!("{} find key values by prefix prefix size", title_name);
        let find_key_values_by_prefix_prefix_size =
            register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_find_key_values_by_prefix_num_keys", var_name);
        let entry2 = format!("{} find key values by prefix num keys", title_name);
        let find_key_values_by_prefix_num_keys =
            register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_find_key_values_by_prefix_key_values_size", var_name);
        let entry2 = format!("{} find key values by prefix key values size", title_name);
        let find_key_values_by_prefix_key_values_size =
            register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_write_batch_size", var_name);
        let entry2 = format!("{} write batch size", title_name);
        let write_batch_size = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_list_all_sizes", var_name);
        let entry2 = format!("{} list all sizes", title_name);
        let list_all_sizes = register_histogram_vec(&entry1, &entry2, &[], None);

        let entry1 = format!("{}_exists_true_cases", var_name);
        let entry2 = format!("{} exists true cases", title_name);
        let exists_true_cases = register_int_counter_vec(&entry1, &entry2, &[]);

        KeyValueStoreMetrics {
            read_value_bytes_latency,
            contains_key_latency,
            contains_keys_latency,
            read_multi_values_bytes_latency,
            find_keys_by_prefix_latency,
            find_key_values_by_prefix_latency,
            write_batch_latency,
            clear_journal_latency,
            connect_latency,
            clone_with_root_key_latency,
            list_all_latency,
            list_root_keys_latency,
            delete_all_latency,
            exists_latency,
            create_latency,
            delete_latency,
            read_value_none_cases,
            read_value_key_size,
            read_value_value_size,
            read_multi_values_num_entries,
            read_multi_values_key_sizes,
            contains_keys_num_entries,
            contains_keys_key_sizes,
            contains_key_key_size,
            find_keys_by_prefix_prefix_size,
            find_keys_by_prefix_num_keys,
            find_keys_by_prefix_keys_size,
            find_key_values_by_prefix_prefix_size,
            find_key_values_by_prefix_num_keys,
            find_key_values_by_prefix_key_values_size,
            write_batch_size,
            list_all_sizes,
            exists_true_cases,
        }
    }
}

/// A metered wrapper that keeps track of every operation
#[derive(Clone)]
pub struct MeteredStore<K> {
    /// the metrics being stored
    counter: Arc<KeyValueStoreMetrics>,
    /// The underlying store of the metered store
    store: K,
}

impl<K> WithError for MeteredStore<K>
where
    K: WithError,
{
    type Error = K::Error;
}

impl<K> ReadableKeyValueStore for MeteredStore<K>
where
    K: ReadableKeyValueStore + Send + Sync,
{
    const MAX_KEY_SIZE: usize = K::MAX_KEY_SIZE;
    type Keys = K::Keys;
    type KeyValues = K::KeyValues;

    fn max_stream_queries(&self) -> usize {
        self.store.max_stream_queries()
    }

    async fn read_value_bytes(&self, key: &[u8]) -> Result<Option<Vec<u8>>, Self::Error> {
        let _latency = self.counter.read_value_bytes_latency.measure_latency();
        self.counter
            .read_value_key_size
            .with_label_values(&[])
            .observe(key.len() as f64);
        let result = self.store.read_value_bytes(key).await?;
        match &result {
            None => self
                .counter
                .read_value_none_cases
                .with_label_values(&[])
                .inc(),
            Some(value) => self
                .counter
                .read_value_value_size
                .with_label_values(&[])
                .observe(value.len() as f64),
        }
        Ok(result)
    }

    async fn contains_key(&self, key: &[u8]) -> Result<bool, Self::Error> {
        let _latency = self.counter.contains_key_latency.measure_latency();
        self.counter
            .contains_key_key_size
            .with_label_values(&[])
            .observe(key.len() as f64);
        self.store.contains_key(key).await
    }

    async fn contains_keys(&self, keys: Vec<Vec<u8>>) -> Result<Vec<bool>, Self::Error> {
        let _latency = self.counter.contains_keys_latency.measure_latency();
        self.counter
            .contains_keys_num_entries
            .with_label_values(&[])
            .observe(keys.len() as f64);
        let key_sizes = keys.iter().map(|k| k.len()).sum::<usize>();
        self.counter
            .contains_keys_key_sizes
            .with_label_values(&[])
            .observe(key_sizes as f64);
        self.store.contains_keys(keys).await
    }

    async fn read_multi_values_bytes(
        &self,
        keys: Vec<Vec<u8>>,
    ) -> Result<Vec<Option<Vec<u8>>>, Self::Error> {
        let _latency = self
            .counter
            .read_multi_values_bytes_latency
            .measure_latency();
        self.counter
            .read_multi_values_num_entries
            .with_label_values(&[])
            .observe(keys.len() as f64);
        let key_sizes = keys.iter().map(|k| k.len()).sum::<usize>();
        self.counter
            .read_multi_values_key_sizes
            .with_label_values(&[])
            .observe(key_sizes as f64);
        self.store.read_multi_values_bytes(keys).await
    }

    async fn find_keys_by_prefix(&self, key_prefix: &[u8]) -> Result<Self::Keys, Self::Error> {
        let _latency = self.counter.find_keys_by_prefix_latency.measure_latency();
        self.counter
            .find_keys_by_prefix_prefix_size
            .with_label_values(&[])
            .observe(key_prefix.len() as f64);
        let result = self.store.find_keys_by_prefix(key_prefix).await?;
        let (num_keys, keys_size) = result
            .iterator()
            .map(|key| key.map(|k| k.len()))
            .collect::<Result<Vec<usize>, _>>()?
            .into_iter()
            .fold((0, 0), |(count, size), len| (count + 1, size + len));
        self.counter
            .find_keys_by_prefix_num_keys
            .with_label_values(&[])
            .observe(num_keys as f64);
        self.counter
            .find_keys_by_prefix_keys_size
            .with_label_values(&[])
            .observe(keys_size as f64);
        Ok(result)
    }

    async fn find_key_values_by_prefix(
        &self,
        key_prefix: &[u8],
    ) -> Result<Self::KeyValues, Self::Error> {
        let _latency = self
            .counter
            .find_key_values_by_prefix_latency
            .measure_latency();
        self.counter
            .find_key_values_by_prefix_prefix_size
            .with_label_values(&[])
            .observe(key_prefix.len() as f64);
        let result = self.store.find_key_values_by_prefix(key_prefix).await?;
        let (num_keys, key_values_size) = result
            .iterator()
            .map(|key_value| key_value.map(|(key, value)| key.len() + value.len()))
            .collect::<Result<Vec<usize>, _>>()?
            .into_iter()
            .fold((0, 0), |(count, size), len| (count + 1, size + len));
        self.counter
            .find_key_values_by_prefix_num_keys
            .with_label_values(&[])
            .observe(num_keys as f64);
        self.counter
            .find_key_values_by_prefix_key_values_size
            .with_label_values(&[])
            .observe(key_values_size as f64);
        Ok(result)
    }
}

impl<K> WritableKeyValueStore for MeteredStore<K>
where
    K: WritableKeyValueStore + Send + Sync,
{
    const MAX_VALUE_SIZE: usize = K::MAX_VALUE_SIZE;

    async fn write_batch(&self, batch: Batch) -> Result<(), Self::Error> {
        let _latency = self.counter.write_batch_latency.measure_latency();
        self.counter
            .write_batch_size
            .with_label_values(&[])
            .observe(batch.size() as f64);
        self.store.write_batch(batch).await
    }

    async fn clear_journal(&self) -> Result<(), Self::Error> {
        let _metric = self.counter.clear_journal_latency.measure_latency();
        self.store.clear_journal().await
    }
}

impl<K> AdminKeyValueStore for MeteredStore<K>
where
    K: AdminKeyValueStore + Send + Sync,
{
    type Config = K::Config;

    fn get_name() -> String {
        K::get_name()
    }

    async fn connect(
        config: &Self::Config,
        namespace: &str,
        root_key: &[u8],
    ) -> Result<Self, Self::Error> {
        let name = K::get_name();
        let counter = get_counter(&name);
        let _latency = counter.connect_latency.measure_latency();
        let store = K::connect(config, namespace, root_key).await?;
        let counter = get_counter(&name);
        Ok(Self { counter, store })
    }

    fn clone_with_root_key(&self, root_key: &[u8]) -> Result<Self, Self::Error> {
        let _latency = self.counter.clone_with_root_key_latency.measure_latency();
        let store = self.store.clone_with_root_key(root_key)?;
        let counter = self.counter.clone();
        Ok(Self { counter, store })
    }

    async fn list_all(config: &Self::Config) -> Result<Vec<String>, Self::Error> {
        let name = K::get_name();
        let counter = get_counter(&name);
        let _latency = counter.list_all_latency.measure_latency();
        let namespaces = K::list_all(config).await?;
        let counter = get_counter(&name);
        counter
            .list_all_sizes
            .with_label_values(&[])
            .observe(namespaces.len() as f64);
        Ok(namespaces)
    }

    async fn list_root_keys(
        config: &Self::Config,
        namespace: &str,
    ) -> Result<Vec<Vec<u8>>, Self::Error> {
        let name = K::get_name();
        let counter = get_counter(&name);
        let _latency = counter.list_root_keys_latency.measure_latency();
        K::list_root_keys(config, namespace).await
    }

    async fn delete_all(config: &Self::Config) -> Result<(), Self::Error> {
        let name = K::get_name();
        let counter = get_counter(&name);
        let _latency = counter.delete_all_latency.measure_latency();
        K::delete_all(config).await
    }

    async fn exists(config: &Self::Config, namespace: &str) -> Result<bool, Self::Error> {
        let name = K::get_name();
        let counter = get_counter(&name);
        let _latency = counter.exists_latency.measure_latency();
        let result = K::exists(config, namespace).await?;
        if result {
            let counter = get_counter(&name);
            counter.exists_true_cases.with_label_values(&[]).inc();
        }
        Ok(result)
    }

    async fn create(config: &Self::Config, namespace: &str) -> Result<(), Self::Error> {
        let name = K::get_name();
        let counter = get_counter(&name);
        let _latency = counter.create_latency.measure_latency();
        K::create(config, namespace).await
    }

    async fn delete(config: &Self::Config, namespace: &str) -> Result<(), Self::Error> {
        let name = K::get_name();
        let counter = get_counter(&name);
        let _latency = counter.delete_latency.measure_latency();
        K::delete(config, namespace).await
    }
}

#[cfg(with_testing)]
impl<K> TestKeyValueStore for MeteredStore<K>
where
    K: TestKeyValueStore + Send + Sync,
{
    async fn new_test_config() -> Result<K::Config, Self::Error> {
        K::new_test_config().await
    }
}