linera_views/test_utils/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
// Copyright (c) Zefchain Labs, Inc.
// SPDX-License-Identifier: Apache-2.0

pub mod test_views;

/// Functions for computing the performance of stores.
#[cfg(not(target_arch = "wasm32"))]
pub mod performance;

use std::collections::{BTreeMap, BTreeSet, HashSet};

use rand::{seq::SliceRandom, Rng};

use crate::{
    batch::{
        Batch, WriteOperation,
        WriteOperation::{Delete, Put},
    },
    random::{generate_test_namespace, make_deterministic_rng, make_nondeterministic_rng},
    store::{
        KeyIterable, KeyValueIterable, LocalKeyValueStore, LocalRestrictedKeyValueStore,
        TestKeyValueStore,
    },
};

/// Returns a random key prefix used for tests
pub fn get_random_key_prefix() -> Vec<u8> {
    let mut key_prefix = vec![0];
    let value: usize = make_nondeterministic_rng().rng_mut().gen();
    bcs::serialize_into(&mut key_prefix, &value).unwrap();
    key_prefix
}

/// Takes a random number generator, a `key_prefix` and extends it by n random bytes.
pub fn get_random_byte_vector<R: Rng>(rng: &mut R, key_prefix: &[u8], n: usize) -> Vec<u8> {
    let mut v = key_prefix.to_vec();
    for _ in 0..n {
        let val = rng.gen_range(0..256) as u8;
        v.push(val);
    }
    v
}

/// Appends a small value to a key making collisions likely.
pub fn get_small_key_space<R: Rng>(rng: &mut R, key_prefix: &[u8], n: usize) -> Vec<u8> {
    let mut key = key_prefix.to_vec();
    for _ in 0..n {
        let byte = rng.gen_range(0..4) as u8;
        key.push(byte);
    }
    key
}

/// Builds a random k element subset of n
pub fn get_random_kset<R: Rng>(rng: &mut R, n: usize, k: usize) -> Vec<usize> {
    let mut values = Vec::new();
    for u in 0..n {
        values.push(u);
    }
    values.shuffle(rng);
    values[..k].to_vec()
}

/// Takes a random number generator, a `key_prefix` and generates
/// pairs `(key, value)` with key obtained by appending 8 bytes at random to `key_prefix`
/// and value obtained by appending 8 bytes to the trivial vector.
/// We return n such `(key, value)` pairs which are all distinct
pub fn get_random_key_values_prefix<R: Rng>(
    rng: &mut R,
    key_prefix: Vec<u8>,
    len_key: usize,
    len_value: usize,
    num_entries: usize,
) -> Vec<(Vec<u8>, Vec<u8>)> {
    loop {
        let mut v_ret = Vec::new();
        let mut vector_set = HashSet::new();
        for _ in 0..num_entries {
            let v1 = get_random_byte_vector(rng, &key_prefix, len_key);
            let v2 = get_random_byte_vector(rng, &Vec::new(), len_value);
            let v12 = (v1.clone(), v2);
            vector_set.insert(v1);
            v_ret.push(v12);
        }
        if vector_set.len() == num_entries {
            return v_ret;
        }
    }
}

/// Takes a random number generator `rng`, a number n and returns n random `(key, value)`
/// which are all distinct with key and value being of length 8.
pub fn get_random_key_values<R: Rng>(rng: &mut R, num_entries: usize) -> Vec<(Vec<u8>, Vec<u8>)> {
    get_random_key_values_prefix(rng, Vec::new(), 8, 8, num_entries)
}

type VectorPutDelete = (Vec<(Vec<u8>, Vec<u8>)>, usize);

/// A bunch of puts and some deletes.
pub fn get_random_key_value_operations<R: Rng>(
    rng: &mut R,
    num_entries: usize,
    k: usize,
) -> VectorPutDelete {
    let key_value_vector = get_random_key_values_prefix(rng, Vec::new(), 8, 8, num_entries);
    (key_value_vector, k)
}

/// A random reordering of the puts and deletes.
/// For something like `MapView` it should get us the same result whatever way we are calling.
pub fn span_random_reordering_put_delete<R: Rng>(
    rng: &mut R,
    info_op: VectorPutDelete,
) -> Vec<WriteOperation> {
    let n = info_op.0.len();
    let k = info_op.1;
    let mut indices = Vec::new();
    for i in 0..n {
        indices.push(i);
    }
    indices.shuffle(rng);
    let mut indices_rev = vec![0; n];
    for i in 0..n {
        indices_rev[indices[i]] = i;
    }
    let mut pos_remove_vector = vec![Vec::new(); n];
    for (i, pos) in indices_rev.iter().enumerate().take(k) {
        let idx = rng.gen_range(*pos..n);
        pos_remove_vector[idx].push(i);
    }
    let mut operations = Vec::new();
    for i in 0..n {
        let pos = indices[i];
        let pair = info_op.0[pos].clone();
        operations.push(Put {
            key: pair.0,
            value: pair.1,
        });
        for pos_remove in pos_remove_vector[i].clone() {
            let key = info_op.0[pos_remove].0.clone();
            operations.push(Delete { key });
        }
    }
    operations
}

/// This test starts with a collection of key/values being inserted into the code
/// which is then followed by a number of reading tests. The functionalities being
/// tested are all the reading functionalities:
/// * `read_value_bytes`
/// * `read_multi_values_bytes`
/// * `find_keys_by_prefix` / `find_key_values_by_prefix`
/// * The ordering of keys returned by `find_keys_by_prefix` and `find_key_values_by_prefix`
pub async fn run_reads<S: LocalRestrictedKeyValueStore>(
    store: S,
    key_values: Vec<(Vec<u8>, Vec<u8>)>,
) {
    // We need a nontrivial key_prefix because dynamo requires a non-trivial prefix
    let mut batch = Batch::new();
    let mut keys = Vec::new();
    let mut set_keys = HashSet::new();
    for (key, value) in &key_values {
        keys.push(&key[..]);
        set_keys.insert(&key[..]);
        batch.put_key_value_bytes(key.clone(), value.clone());
    }
    store.write_batch(batch).await.unwrap();
    for key_prefix in keys
        .iter()
        .flat_map(|key| (0..key.len()).map(|u| &key[..=u]))
    {
        // Getting the find_keys_by_prefix / find_key_values_by_prefix
        let len_prefix = key_prefix.len();
        let keys_by_prefix = store.find_keys_by_prefix(key_prefix).await.unwrap();
        let keys_request = keys_by_prefix
            .iterator()
            .map(Result::unwrap)
            .collect::<Vec<_>>();
        let mut set_key_value1 = HashSet::new();
        let mut keys_request_deriv = Vec::new();
        let key_values_by_prefix = store.find_key_values_by_prefix(key_prefix).await.unwrap();
        for (key, value) in key_values_by_prefix.iterator().map(Result::unwrap) {
            set_key_value1.insert((key, value));
            keys_request_deriv.push(key);
        }
        // Check find_keys / find_key_values
        assert_eq!(keys_request, keys_request_deriv);
        // Check key ordering
        for i in 1..keys_request.len() {
            assert!(keys_request[i - 1] < keys_request[i]);
        }
        // Check the obtained values
        let mut set_key_value2 = HashSet::new();
        for (key, value) in &key_values {
            if key.starts_with(key_prefix) {
                set_key_value2.insert((&key[len_prefix..], &value[..]));
            }
        }
        assert_eq!(set_key_value1, set_key_value2);
    }
    // Now checking the read_multi_values_bytes
    let mut rng = make_deterministic_rng();
    for _ in 0..3 {
        let mut keys = Vec::new();
        let mut values = Vec::new();
        for (key, value) in &key_values {
            if rng.gen() {
                // Put a key that is already present
                keys.push(key.clone());
                values.push(Some(value.clone()));
            } else {
                // Put a missing key
                let len = key.len();
                let pos = rng.gen_range(0..len);
                let byte = *key.get(pos).unwrap();
                let new_byte: u8 = if byte < 255 { byte + 1 } else { byte - 1 };
                let mut new_key = key.clone();
                *new_key.get_mut(pos).unwrap() = new_byte;
                if !set_keys.contains(&*new_key) {
                    keys.push(new_key);
                    values.push(None);
                }
            }
        }
        let mut test_exists = Vec::new();
        let mut values_single_read = Vec::new();
        for key in &keys {
            test_exists.push(store.contains_key(key).await.unwrap());
            values_single_read.push(store.read_value_bytes(key).await.unwrap());
        }
        let test_exists_direct = store.contains_keys(keys.clone()).await.unwrap();
        let values_read = store.read_multi_values_bytes(keys).await.unwrap();
        assert_eq!(values, values_read);
        assert_eq!(values, values_single_read);
        let values_read_stat = values_read.iter().map(|x| x.is_some()).collect::<Vec<_>>();
        assert_eq!(values_read_stat, test_exists);
        assert_eq!(values_read_stat, test_exists_direct);
    }
}

fn get_random_key_values1(num_entries: usize, len_value: usize) -> Vec<(Vec<u8>, Vec<u8>)> {
    let key_prefix = vec![0];
    let mut rng = make_deterministic_rng();
    get_random_key_values_prefix(&mut rng, key_prefix, 8, len_value, num_entries)
}

/// Generates a list of random key-values with no duplicates
pub fn get_random_key_values2(
    num_entries: usize,
    len_key: usize,
    len_value: usize,
) -> Vec<(Vec<u8>, Vec<u8>)> {
    let mut rng = make_deterministic_rng();
    let key_prefix = vec![0];
    let mut key_values = Vec::new();
    let mut key_set = HashSet::new();
    for _ in 0..num_entries {
        let key = get_small_key_space(&mut rng, &key_prefix, len_key);
        if !key_set.contains(&key) {
            key_set.insert(key.clone());
            let value = get_random_byte_vector(&mut rng, &[], len_value);
            key_values.push((key, value));
        }
    }
    key_values
}

/// Adds a prefix to a list of key-values
pub fn add_prefix(prefix: &[u8], key_values: Vec<(Vec<u8>, Vec<u8>)>) -> Vec<(Vec<u8>, Vec<u8>)> {
    key_values
        .into_iter()
        .map(|(key, value)| {
            let mut big_key = prefix.to_vec();
            big_key.extend(key);
            (big_key, value)
        })
        .collect()
}

/// We build a number of scenarios for testing the reads.
pub fn get_random_test_scenarios() -> Vec<Vec<(Vec<u8>, Vec<u8>)>> {
    vec![
        get_random_key_values1(7, 3),
        get_random_key_values1(150, 3),
        get_random_key_values1(30, 10),
        get_random_key_values2(30, 4, 10),
        get_random_key_values2(30, 4, 100),
    ]
}

fn generate_random_batch<R: Rng>(rng: &mut R, key_prefix: &[u8], batch_size: usize) -> Batch {
    let mut batch = Batch::new();
    // Fully random batch
    for _ in 0..batch_size {
        let choice = rng.gen_range(0..8);
        // Inserting a key
        if choice < 6 {
            // Insert
            let key = get_small_key_space(rng, key_prefix, 4);
            let len_value = rng.gen_range(0..10); // Could need to be split
            let value = get_random_byte_vector(rng, &[], len_value);
            batch.put_key_value_bytes(key.clone(), value.clone());
        }
        if choice == 6 {
            // key might be missing, no matter, it has to work
            let key = get_small_key_space(rng, key_prefix, 4);
            batch.delete_key(key);
        }
        if choice == 7 {
            let len = rng.gen_range(1..4); // We want a non-trivial range
            let delete_key_prefix = get_small_key_space(rng, key_prefix, len);
            batch.delete_key_prefix(delete_key_prefix.clone());
        }
    }
    batch
}

fn get_key(key_prefix: &[u8], key_suffix: Vec<u8>) -> Vec<u8> {
    let mut key = key_prefix.to_vec();
    key.extend(key_suffix);
    key
}

fn generate_specific_batch(key_prefix: &[u8], option: usize) -> Batch {
    let mut batch = Batch::new();
    if option == 0 {
        let key = get_key(key_prefix, vec![34]);
        batch.put_key_value_bytes(key.clone(), vec![]);
        batch.delete_key(key);
    }
    if option == 1 {
        let key1 = get_key(key_prefix, vec![12, 34]);
        let key2 = get_key(key_prefix, vec![12, 33]);
        let key3 = get_key(key_prefix, vec![13]);
        batch.put_key_value_bytes(key1.clone(), vec![]);
        batch.put_key_value_bytes(key2, vec![]);
        batch.put_key_value_bytes(key3, vec![]);
        batch.delete_key(key1);
        let key_prefix = get_key(key_prefix, vec![12]);
        batch.delete_key_prefix(key_prefix);
    }
    batch
}

fn update_state_from_batch(kv_state: &mut BTreeMap<Vec<u8>, Vec<u8>>, batch: &Batch) {
    for operation in &batch.operations {
        match operation {
            WriteOperation::Put { key, value } => {
                kv_state.insert(key.to_vec(), value.to_vec());
            }
            WriteOperation::Delete { key } => {
                kv_state.remove(key);
            }
            WriteOperation::DeletePrefix { key_prefix } => {
                kv_state.retain(|key, _| !key.starts_with(key_prefix));
            }
        }
    }
}

fn realize_batch(batch: &Batch) -> BTreeMap<Vec<u8>, Vec<u8>> {
    let mut kv_state = BTreeMap::new();
    update_state_from_batch(&mut kv_state, batch);
    kv_state
}

async fn read_keys_prefix<C: LocalRestrictedKeyValueStore>(
    key_value_store: &C,
    key_prefix: &[u8],
) -> BTreeSet<Vec<u8>> {
    let mut keys = BTreeSet::new();
    for key in key_value_store
        .find_keys_by_prefix(key_prefix)
        .await
        .unwrap()
        .iterator()
    {
        let key_suffix = key.unwrap();
        let mut key = key_prefix.to_vec();
        key.extend(key_suffix);
        keys.insert(key);
    }
    keys
}

async fn read_key_values_prefix<C: LocalRestrictedKeyValueStore>(
    key_value_store: &C,
    key_prefix: &[u8],
) -> BTreeMap<Vec<u8>, Vec<u8>> {
    let mut key_values = BTreeMap::new();
    for key_value in key_value_store
        .find_key_values_by_prefix(key_prefix)
        .await
        .unwrap()
        .iterator()
    {
        let (key_suffix, value) = key_value.unwrap();
        let mut key = key_prefix.to_vec();
        key.extend(key_suffix);
        key_values.insert(key, value.to_vec());
    }
    key_values
}

/// Writes and then reads data under a prefix, and verifies the result.
pub async fn run_test_batch_from_blank<C: LocalRestrictedKeyValueStore>(
    key_value_store: &C,
    key_prefix: Vec<u8>,
    batch: Batch,
) {
    let kv_state = realize_batch(&batch);
    key_value_store.write_batch(batch).await.unwrap();
    // Checking the consistency
    let key_values = read_key_values_prefix(key_value_store, &key_prefix).await;
    assert_eq!(key_values, kv_state);
}

/// Run many operations on batches always starting from a blank state.
pub async fn run_writes_from_blank<C: LocalRestrictedKeyValueStore>(key_value_store: &C) {
    let mut rng = make_deterministic_rng();
    let n_oper = 10;
    let batch_size = 500;
    // key space has size 4^4 = 256 so we necessarily encounter collisions
    // because the number of generated keys is about batch_size * n_oper = 800 > 256.
    for _ in 0..n_oper {
        let key_prefix = get_random_key_prefix();
        let batch = generate_random_batch(&mut rng, &key_prefix, batch_size);
        run_test_batch_from_blank(key_value_store, key_prefix, batch).await;
    }
    for option in 0..2 {
        let key_prefix = get_random_key_prefix();
        let batch = generate_specific_batch(&key_prefix, option);
        run_test_batch_from_blank(key_value_store, key_prefix, batch).await;
    }
}

/// Reading many keys at a time could trigger an error. This needs to be tested.
pub async fn big_read_multi_values<C: LocalKeyValueStore>(
    config: C::Config,
    value_size: usize,
    n_entries: usize,
) {
    let mut rng = make_deterministic_rng();
    let namespace = generate_test_namespace();
    let store = C::recreate_and_connect(&config, &namespace).await.unwrap();
    let store = store.clone_with_root_key(&[]).unwrap();
    let key_prefix = vec![42, 54];
    let mut batch = Batch::new();
    let mut keys = Vec::new();
    let mut values = Vec::new();
    for i in 0..n_entries {
        let mut key = key_prefix.clone();
        bcs::serialize_into(&mut key, &i).unwrap();
        let value = get_random_byte_vector(&mut rng, &[], value_size);
        batch.put_key_value_bytes(key.clone(), value.clone());
        keys.push(key);
        values.push(Some(value));
    }
    store.write_batch(batch).await.unwrap();
    // We reconnect so that the read is not using the cache.
    let store = C::connect(&config, &namespace).await.unwrap();
    let store = store.clone_with_root_key(&[]).unwrap();
    let values_read = store.read_multi_values_bytes(keys).await.unwrap();
    assert_eq!(values, values_read);
}

/// That test is especially challenging for ScyllaDB.
/// In its default settings, Scylla has a limitation to 10000 tombstones.
/// A tombstone is an indication that the data has been deleted. That
/// is thus a trie data structure for checking whether a requested key
/// is deleted or not.
///
/// In this test we insert 200000 keys into the database.
/// Then we select half of them at random and delete them. By the random
/// selection, Scylla is forced to introduce around 100000 tombstones
/// which triggers the crash with the default settings.
pub async fn tombstone_triggering_test<C: LocalRestrictedKeyValueStore>(key_value_store: C) {
    use std::time::Instant;
    let t1 = Instant::now();
    let mut rng = make_deterministic_rng();
    let value_size = 100;
    let n_entry = 200000;
    // Putting the keys
    let mut batch_insert = Batch::new();
    let key_prefix = vec![0];
    let mut batch_delete = Batch::new();
    let mut remaining_key_values = BTreeMap::new();
    let mut remaining_keys = BTreeSet::new();
    for i in 0..n_entry {
        let mut key = key_prefix.clone();
        bcs::serialize_into(&mut key, &i).unwrap();
        let value = get_random_byte_vector(&mut rng, &[], value_size);
        batch_insert.put_key_value_bytes(key.clone(), value.clone());
        let to_delete = rng.gen::<bool>();
        if to_delete {
            batch_delete.delete_key(key);
        } else {
            remaining_keys.insert(key.clone());
            remaining_key_values.insert(key, value);
        }
    }
    tracing::info!("Set up in {} ms", t1.elapsed().as_millis());

    let t1 = Instant::now();
    run_test_batch_from_blank(&key_value_store, key_prefix.clone(), batch_insert).await;
    tracing::info!("run_test_batch in {} ms", t1.elapsed().as_millis());

    // Deleting them all
    let t1 = Instant::now();
    key_value_store.write_batch(batch_delete).await.unwrap();
    tracing::info!("batch_delete in {} ms", t1.elapsed().as_millis());

    for iter in 0..5 {
        // Reading everything and seeing that it is now cleaned.
        let t1 = Instant::now();
        let key_values = read_key_values_prefix(&key_value_store, &key_prefix).await;
        assert_eq!(key_values, remaining_key_values);
        tracing::info!(
            "iter={} read_key_values_prefix in {} ms",
            iter,
            t1.elapsed().as_millis()
        );

        let t1 = Instant::now();
        let keys = read_keys_prefix(&key_value_store, &key_prefix).await;
        assert_eq!(keys, remaining_keys);
        tracing::info!(
            "iter={} read_keys_prefix after {} ms",
            iter,
            t1.elapsed().as_millis()
        );
    }
}

/// DynamoDB has limits at 1 MB (for pagination), 4 MB (for write)
/// Let us go right past them at 20 MB of data with writing and then
/// reading it. And 20 MB is not huge by any mean. All `KeyValueStore`
/// must handle that.
///
/// The size of the value vary as each size has its own issues.
pub async fn run_big_write_read<C: LocalRestrictedKeyValueStore>(
    key_value_store: C,
    target_size: usize,
    value_sizes: Vec<usize>,
) {
    let mut rng = make_deterministic_rng();
    for (pos, value_size) in value_sizes.into_iter().enumerate() {
        let n_entry: usize = target_size / value_size;
        let mut batch = Batch::new();
        let key_prefix = vec![0, pos as u8];
        for i in 0..n_entry {
            let mut key = key_prefix.clone();
            bcs::serialize_into(&mut key, &i).unwrap();
            let value = get_random_byte_vector(&mut rng, &[], value_size);
            batch.put_key_value_bytes(key, value);
        }
        run_test_batch_from_blank(&key_value_store, key_prefix, batch).await;
    }
}

type StateBatch = (Vec<(Vec<u8>, Vec<u8>)>, Batch);

async fn run_test_batch_from_state<C: LocalRestrictedKeyValueStore>(
    key_value_store: &C,
    key_prefix: Vec<u8>,
    state_and_batch: StateBatch,
) {
    let (key_values, batch) = state_and_batch;
    let mut batch_insert = Batch::new();
    let mut kv_state = BTreeMap::new();
    for (key, value) in key_values {
        kv_state.insert(key.clone(), value.clone());
        batch_insert.put_key_value_bytes(key, value);
    }
    key_value_store.write_batch(batch_insert).await.unwrap();
    let key_values = read_key_values_prefix(key_value_store, &key_prefix).await;
    assert_eq!(key_values, kv_state);

    update_state_from_batch(&mut kv_state, &batch);
    key_value_store.write_batch(batch).await.unwrap();
    let key_values = read_key_values_prefix(key_value_store, &key_prefix).await;
    assert_eq!(key_values, kv_state);
}

fn generate_specific_state_batch(key_prefix: &[u8], option: usize) -> StateBatch {
    let mut key_values = Vec::new();
    let mut batch = Batch::new();
    if option == 0 {
        // A DeletePrefix followed by an insertion that matches the DeletePrefix
        let key1 = get_key(key_prefix, vec![1, 3]);
        let key2 = get_key(key_prefix, vec![1, 4]);
        let key3 = get_key(key_prefix, vec![1, 4, 5]);
        key_values.push((key1.clone(), vec![34]));
        key_values.push((key2.clone(), vec![45]));
        batch.delete_key_prefix(key2);
        batch.put_key_value_bytes(key3, vec![23]);
    }
    if option == 1 {
        // Just a DeletePrefix
        let key1 = get_key(key_prefix, vec![1, 3]);
        let key2 = get_key(key_prefix, vec![1, 4]);
        key_values.push((key1.clone(), vec![34]));
        key_values.push((key2.clone(), vec![45]));
        batch.delete_key_prefix(key2);
    }
    if option == 2 {
        // A Put followed by a DeletePrefix that matches the Put
        let key1 = get_key(key_prefix, vec![1, 3]);
        let key2 = get_key(key_prefix, vec![1, 4]);
        let key3 = get_key(key_prefix, vec![1, 4, 5]);
        key_values.push((key1.clone(), vec![34]));
        key_values.push((key2.clone(), vec![45]));
        batch.put_key_value_bytes(key3, vec![23]);
        batch.delete_key_prefix(key2);
    }
    if option == 3 {
        // A Put followed by a Delete on the same value
        let key1 = get_key(key_prefix, vec![1, 3]);
        let key2 = get_key(key_prefix, vec![1, 4]);
        let key3 = get_key(key_prefix, vec![1, 4, 5]);
        key_values.push((key1.clone(), vec![34]));
        key_values.push((key2.clone(), vec![45]));
        batch.put_key_value_bytes(key3.clone(), vec![23]);
        batch.delete_key(key3);
    }
    if option == 4 {
        // A Delete Key followed by a Put on the same key
        let key1 = get_key(key_prefix, vec![1, 3]);
        let key2 = get_key(key_prefix, vec![1, 4]);
        let key3 = get_key(key_prefix, vec![1, 4, 5]);
        key_values.push((key1.clone(), vec![34]));
        key_values.push((key2.clone(), vec![45]));
        batch.delete_key(key3.clone());
        batch.put_key_value_bytes(key3, vec![23]);
    }
    if option == 5 {
        // A Delete Key followed by a Put on the same key
        let key1 = get_key(key_prefix, vec![1, 3]);
        let key2 = get_key(key_prefix, vec![1, 4]);
        let key3 = get_key(key_prefix, vec![1, 4, 5]);
        let key4 = get_key(key_prefix, vec![1, 5]);
        key_values.push((key1.clone(), vec![34]));
        key_values.push((key2.clone(), vec![45]));
        batch.delete_key(key3.clone());
        batch.put_key_value_bytes(key4, vec![23]);
    }
    if option == 6 {
        let key1 = get_key(key_prefix, vec![0]);
        let key2 = get_key(key_prefix, vec![]);
        key_values.push((key1, vec![33]));
        batch.delete_key_prefix(key2);
    }
    if option == 7 {
        let key1 = get_key(key_prefix, vec![255, 255]);
        let key2 = get_key(key_prefix, vec![255, 255, 1]);
        key_values.push((key2.clone(), vec![]));
        batch.delete_key_prefix(key1);
        batch.put_key_value_bytes(key2, vec![]);
    }
    (key_values, batch)
}

/// Run some deterministic and random batches operation and check their
/// correctness
pub async fn run_writes_from_state<C: LocalRestrictedKeyValueStore>(key_value_store: &C) {
    for option in 0..8 {
        let key_prefix = if option >= 6 {
            vec![255, 255, 255]
        } else {
            get_random_key_prefix()
        };
        let state_batch = generate_specific_state_batch(&key_prefix, option);
        run_test_batch_from_state(key_value_store, key_prefix, state_batch).await;
    }
}

async fn namespaces_with_prefix<S: LocalKeyValueStore>(
    config: &S::Config,
    prefix: &str,
) -> BTreeSet<String> {
    let namespaces = S::list_all(config).await.expect("namespaces");
    namespaces
        .into_iter()
        .filter(|x| x.starts_with(prefix))
        .collect::<BTreeSet<_>>()
}

/// Exercises the namespace functionalities of the `AdminKeyValueStore`.
/// This tests everything except the `delete_all` which would
/// interact with other namespaces.
pub async fn namespace_admin_test<S: TestKeyValueStore>() {
    let config = S::new_test_config().await.expect("config");
    {
        let namespace = generate_test_namespace();
        S::create(&config, &namespace)
            .await
            .expect("first creation of a namespace");
        // Creating a namespace two times should returns an error
        assert!(S::create(&config, &namespace).await.is_err());
    }
    let prefix = generate_test_namespace();
    let namespaces = namespaces_with_prefix::<S>(&config, &prefix).await;
    assert_eq!(namespaces.len(), 0);
    let mut rng = make_deterministic_rng();
    let size = 9;
    // Creating the initial list of namespaces
    let mut working_namespaces = BTreeSet::new();
    for i in 0..size {
        let namespace = format!("{}_{}", prefix, i);
        assert!(!S::exists(&config, &namespace).await.expect("test"));
        working_namespaces.insert(namespace);
    }
    // Creating the namespaces
    for namespace in &working_namespaces {
        S::create(&config, namespace)
            .await
            .expect("creation of a namespace");
        assert!(S::exists(&config, namespace).await.expect("test"));
    }
    // Connecting to all of them at once
    {
        let mut connections = Vec::new();
        for namespace in &working_namespaces {
            let connection = S::connect(&config, namespace)
                .await
                .expect("a connection to the namespace");
            connections.push(connection);
        }
    }
    // Listing all of them
    let namespaces = namespaces_with_prefix::<S>(&config, &prefix).await;
    assert_eq!(namespaces, working_namespaces);
    // Selecting at random some for deletion
    let mut kept_namespaces = BTreeSet::new();
    for namespace in working_namespaces {
        let delete = rng.gen::<bool>();
        if delete {
            S::delete(&config, &namespace)
                .await
                .expect("A successful deletion");
            assert!(!S::exists(&config, &namespace).await.expect("test"));
        } else {
            kept_namespaces.insert(namespace);
        }
    }
    for namespace in &kept_namespaces {
        assert!(S::exists(&config, namespace).await.expect("test"));
    }
    let namespaces = namespaces_with_prefix::<S>(&config, &prefix).await;
    assert_eq!(namespaces, kept_namespaces);
    for namespace in kept_namespaces {
        S::delete(&config, &namespace)
            .await
            .expect("A successful deletion");
    }
}

/// Tests listing the root keys.
pub async fn root_key_admin_test<S: TestKeyValueStore>() {
    let config = S::new_test_config().await.expect("config");
    let namespace = generate_test_namespace();
    let mut root_keys = Vec::new();
    let mut keys = BTreeSet::new();
    S::create(&config, &namespace).await.expect("creation");
    let prefix = vec![0];
    {
        let size = 3;
        let mut rng = make_deterministic_rng();
        let store = S::connect(&config, &namespace).await.expect("store");
        root_keys.push(vec![]);
        let mut batch = Batch::new();
        for _ in 0..2 {
            let key = get_random_byte_vector(&mut rng, &prefix, 4);
            batch.put_key_value_bytes(key.clone(), vec![]);
            keys.insert((vec![], key));
        }
        store.write_batch(batch).await.expect("write batch");

        for _ in 0..20 {
            let root_key = get_random_byte_vector(&mut rng, &[], 4);
            let cloned_store = store.clone_with_root_key(&root_key).expect("cloned store");
            root_keys.push(root_key.clone());
            let size_select = rng.gen_range(0..size);
            let mut batch = Batch::new();
            for _ in 0..size_select {
                let key = get_random_byte_vector(&mut rng, &prefix, 4);
                batch.put_key_value_bytes(key.clone(), vec![]);
                keys.insert((root_key.clone(), key));
            }
            cloned_store.write_batch(batch).await.expect("write batch");
        }
    }

    let read_root_keys = S::list_root_keys(&config, &namespace)
        .await
        .expect("read_root_keys");
    let set_root_keys = root_keys.iter().cloned().collect::<HashSet<_>>();
    for read_root_key in &read_root_keys {
        assert!(set_root_keys.contains(read_root_key));
    }

    let mut read_keys = BTreeSet::new();
    for root_key in read_root_keys {
        let store = S::connect(&config, &namespace)
            .await
            .expect("store")
            .clone_with_root_key(&root_key)
            .expect("clone_with_root_key");
        let keys = store.find_keys_by_prefix(&prefix).await.expect("keys");
        for key in keys.iterator() {
            let key = key.expect("key");
            let mut big_key = prefix.clone();
            let key = key.to_vec();
            big_key.extend(key);
            read_keys.insert((root_key.clone(), big_key));
        }
    }
    assert_eq!(keys, read_keys);
}

/// A store can be in exclusive access where it stores the absence of values
/// or in shared access where only values are stored and (key, value) once
/// written are never modified nor erased.
///
/// In case of no exclusive access the following scenarion is checked
/// * Store 1 deletes a key and does not mark it as missing in its cache.
/// * Store 2 writes the key
/// * Store 1 reads the key, but since it is not in the cache it can read
///   it correctly.
///
/// In case of exclusive access. We have the following scenario:
/// * Store 1 deletes a key and mark it as missing in its cache.
/// * Store 2 writes the key (it should not be doing it)
/// * Store 1 reads the key, see it as missing.
pub async fn exclusive_access_admin_test<S: TestKeyValueStore>(exclusive_access: bool) {
    let config = S::new_test_config().await.expect("config");
    let namespace = generate_test_namespace();
    S::create(&config, &namespace).await.expect("creation");
    let key = vec![42];

    let mut store1 = S::connect(&config, &namespace).await.expect("store");
    if exclusive_access {
        store1 = store1.clone_with_root_key(&[]).expect("store1");
    }
    let mut batch1 = Batch::new();
    batch1.delete_key(key.clone());
    store1.write_batch(batch1).await.expect("write batch1");

    let mut store2 = S::connect(&config, &namespace).await.expect("store");
    if exclusive_access {
        store2 = store2.clone_with_root_key(&[]).expect("store2");
    }
    let mut batch2 = Batch::new();
    batch2.put_key_value_bytes(key.clone(), vec![]);
    store2.write_batch(batch2).await.expect("write batch2");

    assert_eq!(store1.contains_key(&key).await.unwrap(), !exclusive_access);
}

/// Both checks together.
pub async fn access_admin_test<S: TestKeyValueStore>() {
    exclusive_access_admin_test::<S>(true).await;
    exclusive_access_admin_test::<S>(false).await;
}