1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
//! [`Archive`] implementation for B-tree maps.
#[cfg(feature = "validation")]
pub mod validation;
use crate::{Archive, ArchivePointee, Archived, RelPtr};
use core::{
borrow::Borrow,
cmp::Ordering,
fmt,
hash::{Hash, Hasher},
iter::FusedIterator,
marker::PhantomData,
ops::Index,
ptr::NonNull,
};
use ptr_meta::Pointee;
#[cfg_attr(feature = "strict", repr(C))]
struct InnerNodeEntry<K> {
ptr: RelPtr<NodeHeader>,
key: K,
}
#[cfg_attr(feature = "strict", repr(C))]
struct LeafNodeEntry<K, V> {
key: K,
value: V,
}
impl<'a, UK: Archive, UV: Archive> Archive for LeafNodeEntry<&'a UK, &'a UV> {
type Archived = LeafNodeEntry<UK::Archived, UV::Archived>;
type Resolver = (UK::Resolver, UV::Resolver);
#[inline]
unsafe fn resolve(&self, pos: usize, resolver: Self::Resolver, out: *mut Self::Archived) {
let (fp, fo) = out_field!(out.key);
self.key.resolve(pos + fp, resolver.0, fo);
let (fp, fo) = out_field!(out.value);
self.value.resolve(pos + fp, resolver.1, fo);
}
}
#[cfg_attr(feature = "strict", repr(C))]
struct NodeHeader {
meta: Archived<u16>,
size: Archived<usize>,
// For leaf nodes, this points to the next leaf node in order
// For inner nodes, this points to the node in the next layer that's less than the first key in
// this node
ptr: RelPtr<NodeHeader>,
}
impl NodeHeader {
#[inline]
fn is_inner(&self) -> bool {
split_meta(from_archived!(self.meta)).0
}
#[inline]
fn is_leaf(&self) -> bool {
!split_meta(from_archived!(self.meta)).0
}
#[inline]
fn len(&self) -> usize {
split_meta(from_archived!(self.meta)).1
}
}
#[inline]
#[cfg(feature = "alloc")]
fn combine_meta(is_inner: bool, len: usize) -> u16 {
if is_inner {
0x80_00 | len as u16
} else {
len as u16
}
}
#[inline]
fn split_meta(meta: u16) -> (bool, usize) {
(meta & 0x80_00 == 0x80_00, (meta & 0x7F_FF) as usize)
}
#[cfg_attr(feature = "strict", repr(C))]
struct Node<T: ?Sized> {
header: NodeHeader,
tail: T,
}
impl<T> Pointee for Node<[T]> {
type Metadata = usize;
}
impl<T> ArchivePointee for Node<[T]> {
type ArchivedMetadata = Archived<usize>;
#[inline]
fn pointer_metadata(archived: &Self::ArchivedMetadata) -> <Self as Pointee>::Metadata {
from_archived!(*archived) as usize
}
}
type InnerNode<K> = Node<[InnerNodeEntry<K>]>;
type LeafNode<K, V> = Node<[LeafNodeEntry<K, V>]>;
struct NodeHeaderData {
meta: u16,
size: usize,
pos: Option<usize>,
}
impl Archive for NodeHeaderData {
type Archived = NodeHeader;
type Resolver = ();
#[inline]
unsafe fn resolve(&self, pos: usize, _: Self::Resolver, out: *mut Self::Archived) {
let (fp, fo) = out_field!(out.meta);
self.meta.resolve(pos + fp, (), fo);
let (fp, fo) = out_field!(out.size);
self.size.resolve(pos + fp, (), fo);
let (fp, fo) = out_field!(out.ptr);
RelPtr::emplace(pos + fp, self.pos.unwrap_or(pos + fp), fo);
}
}
struct InnerNodeEntryData<'a, UK> {
key: &'a UK,
}
impl<'a, UK: Archive> Archive for InnerNodeEntryData<'a, UK> {
type Archived = InnerNodeEntry<UK::Archived>;
type Resolver = (usize, UK::Resolver);
#[inline]
unsafe fn resolve(&self, pos: usize, resolver: Self::Resolver, out: *mut Self::Archived) {
let (fp, fo) = out_field!(out.ptr);
RelPtr::emplace(pos + fp, resolver.0, fo);
let (fp, fo) = out_field!(out.key);
self.key.resolve(pos + fp, resolver.1, fo);
}
}
enum ClassifiedNode<'a, K, V> {
Inner(&'a InnerNode<K>),
Leaf(&'a LeafNode<K, V>),
}
impl NodeHeader {
#[inline]
fn classify<K, V>(&self) -> ClassifiedNode<'_, K, V> {
if self.is_inner() {
ClassifiedNode::Inner(self.classify_inner())
} else {
ClassifiedNode::Leaf(self.classify_leaf())
}
}
#[inline]
fn classify_inner_ptr<K>(&self) -> *const InnerNode<K> {
ptr_meta::from_raw_parts(self as *const Self as *const (), self.len())
}
#[inline]
fn classify_inner<K>(&self) -> &'_ InnerNode<K> {
debug_assert!(self.is_inner());
unsafe { &*self.classify_inner_ptr() }
}
#[inline]
fn classify_leaf_ptr<K, V>(&self) -> *const LeafNode<K, V> {
ptr_meta::from_raw_parts(self as *const Self as *const (), self.len())
}
#[inline]
fn classify_leaf<K, V>(&self) -> &'_ LeafNode<K, V> {
debug_assert!(self.is_leaf());
unsafe { &*self.classify_leaf_ptr() }
}
}
/// An archived [`BTreeMap`](std::collections::BTreeMap).
#[cfg_attr(feature = "strict", repr(C))]
pub struct ArchivedBTreeMap<K, V> {
len: Archived<usize>,
root: RelPtr<NodeHeader>,
_phantom: PhantomData<(K, V)>,
}
/// The resolver for an [`ArchivedBTreeMap`].
pub struct BTreeMapResolver {
root_pos: usize,
}
/// The minimum number of entries to place in a leaf node.
///
/// This value must be greater than 0
pub const MIN_ENTRIES_PER_LEAF_NODE: usize = 1;
/// The minimum number of entries to place in an inner node.
///
/// This value must be greater than 1
pub const MIN_ENTRIES_PER_INNER_NODE: usize = 2;
impl<K, V> ArchivedBTreeMap<K, V> {
#[inline]
fn root(&self) -> Option<ClassifiedNode<K, V>> {
if self.is_empty() {
None
} else {
let root = unsafe { &*self.root.as_ptr() };
Some(root.classify())
}
}
#[inline]
fn first(&self) -> NonNull<NodeHeader> {
if let Some(mut node) = self.root() {
while let ClassifiedNode::Inner(inner) = node {
let next = unsafe { &*inner.header.ptr.as_ptr() };
node = next.classify();
}
match node {
ClassifiedNode::Leaf(leaf) => unsafe {
let node = (leaf as *const LeafNode<K, V> as *mut LeafNode<K, V>).cast();
NonNull::new_unchecked(node)
},
ClassifiedNode::Inner(_) => unsafe { core::hint::unreachable_unchecked() },
}
} else {
NonNull::dangling()
}
}
/// Returns `true` if the map contains a value for the specified key.
///
/// The key may be any borrowed form of the map's key type, but the ordering on the borrowed
/// form _must_ match the ordering on the key type.
#[inline]
pub fn contains_key<Q: Ord + ?Sized>(&self, key: &Q) -> bool
where
K: Borrow<Q> + Ord,
{
self.get_key_value(key).is_some()
}
/// Returns a reference to the value corresponding to the key.
///
/// The key may be any borrowed form of the map’s key type, but the ordering on the borrowed
/// form must match the ordering on the key type.
#[inline]
pub fn get<Q: Ord + ?Sized>(&self, key: &Q) -> Option<&V>
where
K: Borrow<Q> + Ord,
{
self.get_key_value(key).map(|(_, v)| v)
}
/// Returns the key-value pair corresponding to the supplied key.
///
/// The supplied key may be any borrowed form of the map’s key type, but the ordering on the
/// borrowed form must match the ordering on the key type.
pub fn get_key_value<Q: Ord + ?Sized>(&self, k: &Q) -> Option<(&K, &V)>
where
K: Borrow<Q> + Ord,
{
if let Some(mut current) = self.root() {
loop {
match current {
ClassifiedNode::Inner(node) => {
// Binary search for the next node layer
let next = match node
.tail
.binary_search_by(|probe| probe.key.borrow().cmp(k))
{
Ok(i) => unsafe { &*node.tail[i].ptr.as_ptr() },
Err(i) => {
if i == 0 {
unsafe { &*node.header.ptr.as_ptr() }
} else {
unsafe { &*node.tail[i - 1].ptr.as_ptr() }
}
}
};
current = next.classify();
}
ClassifiedNode::Leaf(node) => {
// Binary search for the value
if let Ok(i) = node
.tail
.binary_search_by(|probe| probe.key.borrow().cmp(k))
{
let entry = &node.tail[i];
break Some((&entry.key, &entry.value));
} else {
break None;
}
}
}
}
} else {
None
}
}
/// Returns `true` if the map contains no elements.
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Gets an iterator over the entries of the map, sorted by key.
#[inline]
pub fn iter(&self) -> Iter<'_, K, V> {
Iter {
inner: RawIter::new(self.first(), 0, self.len()),
}
}
/// Gets an iterator over the keys of the map, in sorted order.
#[inline]
pub fn keys(&self) -> Keys<'_, K, V> {
Keys {
inner: RawIter::new(self.first(), 0, self.len()),
}
}
/// Returns the number of items in the archived B-tree map.
#[inline]
pub fn len(&self) -> usize {
from_archived!(self.len) as usize
}
/// Gets an iterator over the values of the map, in order by key.
#[inline]
pub fn values(&self) -> Values<'_, K, V> {
Values {
inner: RawIter::new(self.first(), 0, self.len()),
}
}
/// Resolves a B-tree map from its length.
///
/// # Safety
///
/// - `len` must be the number of elements that were serialized
/// - `pos` must be the position of `out` within the archive
/// - `resolver` must be the result of serializing a B-tree map
#[inline]
pub unsafe fn resolve_from_len(
len: usize,
pos: usize,
resolver: BTreeMapResolver,
out: *mut Self,
) {
let (fp, fo) = out_field!(out.len);
len.resolve(pos + fp, (), fo);
let (fp, fo) = out_field!(out.root);
RelPtr::emplace(pos + fp, resolver.root_pos, fo);
}
}
#[cfg(feature = "alloc")]
const _: () = {
use crate::{ser::Serializer, Serialize};
#[cfg(not(feature = "std"))]
use alloc::vec::Vec;
use core::mem;
impl<K, V> ArchivedBTreeMap<K, V> {
/// Serializes an ordered iterator of key-value pairs as a B-tree map.
///
/// # Safety
///
/// - Keys returned by the iterator must be unique
/// - Keys must be in reverse sorted order from last to first
pub unsafe fn serialize_from_reverse_iter<'a, UK, UV, S, I>(
mut iter: I,
serializer: &mut S,
) -> Result<BTreeMapResolver, S::Error>
where
UK: 'a + Serialize<S, Archived = K>,
UV: 'a + Serialize<S, Archived = V>,
S: Serializer + ?Sized,
I: ExactSizeIterator<Item = (&'a UK, &'a UV)>,
{
if iter.len() == 0 {
Ok(BTreeMapResolver { root_pos: 0 })
} else {
// The memory span of a single node should not exceed 4kb to keep everything within
// the distance of a single IO page
const MAX_NODE_SIZE: usize = 4096;
// The nodes that must go in the next level in reverse order (key, node_pos)
let mut next_level = Vec::new();
let mut resolvers = Vec::new();
while let Some((key, value)) = iter.next() {
// Start a new block
let block_start_pos = serializer.pos();
// Serialize the last entry
resolvers.push((
key,
value,
key.serialize(serializer)?,
value.serialize(serializer)?,
));
loop {
// This is an estimate of the block size
// It's not exact because there may be padding to align the node and entries
// slice
let estimated_block_size = serializer.pos() - block_start_pos
+ mem::size_of::<NodeHeader>()
+ resolvers.len() * mem::size_of::<LeafNodeEntry<K, V>>();
// If we've reached or exceeded the maximum node size and have put enough
// entries in this node, then break
if estimated_block_size >= MAX_NODE_SIZE
&& resolvers.len() >= MIN_ENTRIES_PER_LEAF_NODE
{
break;
}
if let Some((key, value)) = iter.next() {
// Serialize the next entry
resolvers.push((
key,
value,
key.serialize(serializer)?,
value.serialize(serializer)?,
));
} else {
break;
}
}
// Finish the current node
serializer.align(usize::max(
mem::align_of::<NodeHeader>(),
mem::align_of::<LeafNodeEntry<K, V>>(),
))?;
let raw_node = NodeHeaderData {
meta: combine_meta(false, resolvers.len()),
size: serializer.pos() - block_start_pos,
// The last element of next_level is the next block we're linked to
pos: next_level.last().map(|&(_, pos)| pos),
};
// Add the first key and node position to the next level
next_level.push((
resolvers.last().unwrap().0,
serializer.resolve_aligned(&raw_node, ())?,
));
serializer.align_for::<LeafNodeEntry<K, V>>()?;
for (key, value, key_resolver, value_resolver) in resolvers.drain(..).rev() {
serializer.resolve_aligned(
&LeafNodeEntry { key, value },
(key_resolver, value_resolver),
)?;
}
}
// Subsequent levels are populated by serializing node keys from the previous level
// When there's only one node left, that's our root
let mut current_level = Vec::new();
let mut resolvers = Vec::new();
while next_level.len() > 1 {
// Our previous next_level becomes our current level, and current_level is
// guaranteed to be empty at this point
mem::swap(&mut current_level, &mut next_level);
let mut iter = current_level.drain(..);
while iter.len() > 1 {
// Start a new inner block
let block_start_pos = serializer.pos();
// When we break, we're guaranteed to have at least one node left
while iter.len() > 1 {
let (key, pos) = iter.next().unwrap();
// Serialize the next entry
resolvers.push((key, pos, key.serialize(serializer)?));
// Estimate the block size
let estimated_block_size = serializer.pos() - block_start_pos
+ mem::size_of::<NodeHeader>()
+ resolvers.len() * mem::size_of::<InnerNodeEntry<K>>();
// If we've reached or exceeded the maximum node size and have put enough
// keys in this node, then break
if estimated_block_size >= MAX_NODE_SIZE
&& resolvers.len() >= MIN_ENTRIES_PER_INNER_NODE
{
break;
}
}
// Three cases here:
// 1 entry left: use it as the last key
// 2 entries left: serialize the next one and use the last as last to avoid
// putting only one entry in the final block
// 3+ entries left: use next as last, next block will contain at least two
// entries
if iter.len() == 2 {
let (key, pos) = iter.next().unwrap();
// Serialize the next entry
resolvers.push((key, pos, key.serialize(serializer)?));
}
// The next item is the first node
let (first_key, first_pos) = iter.next().unwrap();
// Finish the current node
serializer.align(usize::max(
mem::align_of::<NodeHeaderData>(),
mem::align_of::<InnerNodeEntry<K>>(),
))?;
let node_header = NodeHeaderData {
meta: combine_meta(true, resolvers.len()),
size: serializer.pos() - block_start_pos,
// The pos of the first key is used to make the pointer for inner nodes
pos: Some(first_pos),
};
// Add the second key and node position to the next level
next_level.push((first_key, serializer.resolve_aligned(&node_header, ())?));
serializer.align_for::<InnerNodeEntry<K>>()?;
for (key, pos, resolver) in resolvers.drain(..).rev() {
let inner_node_data = InnerNodeEntryData::<UK> { key };
serializer.resolve_aligned(&inner_node_data, (pos, resolver))?;
}
}
debug_assert!(iter.len() == 0);
}
// The root is only node in the final level
Ok(BTreeMapResolver {
root_pos: next_level[0].1,
})
}
}
}
};
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for ArchivedBTreeMap<K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_map().entries(self.iter()).finish()
}
}
impl<K, Q, V> Index<&'_ Q> for ArchivedBTreeMap<K, V>
where
K: Borrow<Q> + Ord,
Q: Ord + ?Sized,
{
type Output = V;
fn index(&self, key: &Q) -> &V {
self.get(key).unwrap()
}
}
impl<'a, K, V> IntoIterator for &'a ArchivedBTreeMap<K, V> {
type Item = (&'a K, &'a V);
type IntoIter = Iter<'a, K, V>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<K: Eq, V: Eq> Eq for ArchivedBTreeMap<K, V> {}
impl<K: Hash, V: Hash> Hash for ArchivedBTreeMap<K, V> {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
for pair in self.iter() {
pair.hash(state);
}
}
}
impl<K: Ord, V: Ord> Ord for ArchivedBTreeMap<K, V> {
#[inline]
fn cmp(&self, other: &Self) -> Ordering {
self.iter().cmp(other.iter())
}
}
impl<K: PartialEq, V: PartialEq> PartialEq for ArchivedBTreeMap<K, V> {
#[inline]
fn eq(&self, other: &Self) -> bool {
if self.len() != other.len() {
false
} else {
self.iter().zip(other.iter()).all(|(a, b)| a.eq(&b))
}
}
}
impl<K: PartialOrd, V: PartialOrd> PartialOrd for ArchivedBTreeMap<K, V> {
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.iter().partial_cmp(other.iter())
}
}
// RawIter
struct RawIter<'a, K, V> {
leaf: NonNull<NodeHeader>,
index: usize,
remaining: usize,
_phantom: PhantomData<(&'a K, &'a V)>,
}
impl<'a, K, V> RawIter<'a, K, V> {
fn new(leaf: NonNull<NodeHeader>, index: usize, remaining: usize) -> Self {
Self {
leaf,
index,
remaining,
_phantom: PhantomData,
}
}
}
impl<'a, K, V> Iterator for RawIter<'a, K, V> {
type Item = (&'a K, &'a V);
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.remaining == 0 {
None
} else {
unsafe {
// SAFETY: self.leaf is valid when self.remaining > 0
// SAFETY: self.leaf always points to a leaf node header
let leaf = self.leaf.as_ref().classify_leaf::<K, V>();
if self.index == leaf.tail.len() {
self.index = 0;
// SAFETY: when self.remaining > 0 this is guaranteed to point to a leaf node
self.leaf = NonNull::new_unchecked(leaf.header.ptr.as_ptr() as *mut _);
}
let result = &self.leaf.as_ref().classify_leaf().tail[self.index];
self.index += 1;
self.remaining -= 1;
Some((&result.key, &result.value))
}
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.remaining, Some(self.remaining))
}
}
impl<'a, K, V> ExactSizeIterator for RawIter<'a, K, V> {}
impl<'a, K, V> FusedIterator for RawIter<'a, K, V> {}
/// An iterator over the key-value pairs of an archived B-tree map.
pub struct Iter<'a, K, V> {
inner: RawIter<'a, K, V>,
}
impl<'a, K, V> Iterator for Iter<'a, K, V> {
type Item = (&'a K, &'a V);
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.inner.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<'a, K, V> ExactSizeIterator for Iter<'a, K, V> {}
impl<'a, K, V> FusedIterator for Iter<'a, K, V> {}
/// An iterator over the keys of an archived B-tree map.
pub struct Keys<'a, K, V> {
inner: RawIter<'a, K, V>,
}
impl<'a, K, V> Iterator for Keys<'a, K, V> {
type Item = &'a K;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.inner.next().map(|(k, _)| k)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<'a, K, V> ExactSizeIterator for Keys<'a, K, V> {}
impl<'a, K, V> FusedIterator for Keys<'a, K, V> {}
/// An iterator over the values of an archived B-tree map.
pub struct Values<'a, K, V> {
inner: RawIter<'a, K, V>,
}
impl<'a, K, V> Iterator for Values<'a, K, V> {
type Item = &'a V;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.inner.next().map(|(_, v)| v)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<'a, K, V> ExactSizeIterator for Values<'a, K, V> {}
impl<'a, K, V> FusedIterator for Values<'a, K, V> {}