1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
use crate::{algorithms, Uint};
// FEATURE: sub_mod, neg_mod, inv_mod, div_mod, root_mod
// See <https://en.wikipedia.org/wiki/Cipolla's_algorithm>
// FEATURE: mul_mod_redc
// and maybe barrett
// See also <https://static1.squarespace.com/static/61f7cacf2d7af938cad5b81c/t/62deb4e0c434f7134c2730ee/1658762465114/modular_multiplication.pdf>
// FEATURE: Modular wrapper class, like Wrapping.
impl<const BITS: usize, const LIMBS: usize> Uint<BITS, LIMBS> {
/// ⚠️ Compute $\mod{\mathtt{self}}_{\mathtt{modulus}}$.
///
/// **Warning.** This function is not part of the stable API.
///
/// Returns zero if the modulus is zero.
// FEATURE: Reduce larger bit-sizes to smaller ones.
#[inline]
#[must_use]
pub fn reduce_mod(mut self, modulus: Self) -> Self {
if modulus == Self::ZERO {
return Self::ZERO;
}
if self >= modulus {
self %= modulus;
}
self
}
/// Compute $\mod{\mathtt{self} + \mathtt{rhs}}_{\mathtt{modulus}}$.
///
/// Returns zero if the modulus is zero.
#[inline]
#[must_use]
pub fn add_mod(self, rhs: Self, modulus: Self) -> Self {
// Reduce inputs
let lhs = self.reduce_mod(modulus);
let rhs = rhs.reduce_mod(modulus);
// Compute the sum and conditionally subtract modulus once.
let (mut result, overflow) = lhs.overflowing_add(rhs);
if overflow || result >= modulus {
result -= modulus;
}
result
}
/// Compute $\mod{\mathtt{self} ⋅ \mathtt{rhs}}_{\mathtt{modulus}}$.
///
/// Returns zero if the modulus is zero.
///
/// See [`mul_redc`](Self::mul_redc) for a faster variant at the cost of
/// some pre-computation.
#[inline]
#[must_use]
pub fn mul_mod(self, rhs: Self, mut modulus: Self) -> Self {
if modulus == Self::ZERO {
return Self::ZERO;
}
// Allocate at least `nlimbs(2 * BITS)` limbs to store the product. This array
// casting is a workaround for `generic_const_exprs` not being stable.
let mut product = [[0u64; 2]; LIMBS];
let product_len = crate::nlimbs(2 * BITS);
debug_assert!(2 * LIMBS >= product_len);
// SAFETY: `[[u64; 2]; LIMBS] == [u64; 2 * LIMBS] >= [u64; nlimbs(2 * BITS)]`.
let product = unsafe {
core::slice::from_raw_parts_mut(product.as_mut_ptr().cast::<u64>(), product_len)
};
// Compute full product.
let overflow = algorithms::addmul(product, self.as_limbs(), rhs.as_limbs());
debug_assert!(!overflow);
// Compute modulus using `div_rem`.
// This stores the remainder in the divisor, `modulus`.
algorithms::div(product, &mut modulus.limbs);
modulus
}
/// Compute $\mod{\mathtt{self}^{\mathtt{rhs}}}_{\mathtt{modulus}}$.
///
/// Returns zero if the modulus is zero.
#[inline]
#[must_use]
pub fn pow_mod(mut self, mut exp: Self, modulus: Self) -> Self {
if modulus == Self::ZERO || modulus <= Self::from(1) {
// Also covers Self::BITS == 0
return Self::ZERO;
}
// Exponentiation by squaring
let mut result = Self::from(1);
while exp > Self::ZERO {
// Multiply by base
if exp.limbs[0] & 1 == 1 {
result = result.mul_mod(self, modulus);
}
// Square base
self = self.mul_mod(self, modulus);
exp >>= 1;
}
result
}
/// Compute $\mod{\mathtt{self}^{-1}}_{\mathtt{modulus}}$.
///
/// Returns `None` if the inverse does not exist.
#[inline]
#[must_use]
pub fn inv_mod(self, modulus: Self) -> Option<Self> {
algorithms::inv_mod(self, modulus)
}
/// Montgomery multiplication.
///
/// Computes
///
/// $$
/// \mod{\frac{\mathtt{self} ⋅ \mathtt{other}}{ 2^{64 ·
/// \mathtt{LIMBS}}}}_{\mathtt{modulus}} $$
///
/// This is useful because it can be computed notably faster than
/// [`mul_mod`](Self::mul_mod). Many computations can be done by
/// pre-multiplying values with $R = 2^{64 · \mathtt{LIMBS}}$
/// and then using [`mul_redc`](Self::mul_redc) instead of
/// [`mul_mod`](Self::mul_mod).
///
/// For this algorithm to work, it needs an extra parameter `inv` which must
/// be set to
///
/// $$
/// \mathtt{inv} = \mod{\frac{-1}{\mathtt{modulus}} }_{2^{64}}
/// $$
///
/// The `inv` value only exists for odd values of `modulus`. It can be
/// computed using [`inv_ring`](Self::inv_ring) from `U64`.
///
/// ```
/// # use ruint::{uint, Uint, aliases::*};
/// # uint!{
/// # let modulus = 21888242871839275222246405745257275088548364400416034343698204186575808495617_U256;
/// let inv = U64::wrapping_from(modulus).inv_ring().unwrap().wrapping_neg().to();
/// let prod = 5_U256.mul_redc(6_U256, modulus, inv);
/// # assert_eq!(inv.wrapping_mul(modulus.wrapping_to()), u64::MAX);
/// # assert_eq!(inv, 0xc2e1f593efffffff);
/// # }
/// ```
///
/// # Panics
///
/// Panics if `inv` is not correct.
#[inline]
#[must_use]
#[cfg(feature = "alloc")] // TODO: Make mul_redc alloc-free
pub fn mul_redc(self, other: Self, modulus: Self, inv: u64) -> Self {
if BITS == 0 {
return Self::ZERO;
}
assert_eq!(inv.wrapping_mul(modulus.limbs[0]), u64::MAX);
let mut result = Self::ZERO;
algorithms::mul_redc(
self.as_limbs(),
other.as_limbs(),
&mut result.limbs,
modulus.as_limbs(),
inv,
);
debug_assert!(result < modulus);
result
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{aliases::U64, const_for, nlimbs};
use core::cmp::min;
use proptest::{prop_assume, proptest, test_runner::Config};
#[test]
fn test_commutative() {
const_for!(BITS in SIZES {
const LIMBS: usize = nlimbs(BITS);
type U = Uint<BITS, LIMBS>;
proptest!(|(a: U, b: U, m: U)| {
assert_eq!(a.mul_mod(b, m), b.mul_mod(a, m));
});
});
}
#[test]
fn test_associative() {
const_for!(BITS in SIZES {
const LIMBS: usize = nlimbs(BITS);
type U = Uint<BITS, LIMBS>;
proptest!(|(a: U, b: U, c: U, m: U)| {
assert_eq!(a.mul_mod(b.mul_mod(c, m), m), a.mul_mod(b, m).mul_mod(c, m));
});
});
}
#[test]
fn test_distributive() {
const_for!(BITS in SIZES {
const LIMBS: usize = nlimbs(BITS);
type U = Uint<BITS, LIMBS>;
proptest!(|(a: U, b: U, c: U, m: U)| {
assert_eq!(a.mul_mod(b.add_mod(c, m), m), a.mul_mod(b, m).add_mod(a.mul_mod(c, m), m));
});
});
}
#[test]
fn test_add_identity() {
const_for!(BITS in NON_ZERO {
const LIMBS: usize = nlimbs(BITS);
type U = Uint<BITS, LIMBS>;
proptest!(|(value: U, m: U)| {
assert_eq!(value.add_mod(U::from(0), m), value.reduce_mod(m));
});
});
}
#[test]
fn test_mul_identity() {
const_for!(BITS in NON_ZERO {
const LIMBS: usize = nlimbs(BITS);
type U = Uint<BITS, LIMBS>;
proptest!(|(value: U, m: U)| {
assert_eq!(value.mul_mod(U::from(0), m), U::ZERO);
assert_eq!(value.mul_mod(U::from(1), m), value.reduce_mod(m));
});
});
}
#[test]
fn test_pow_identity() {
const_for!(BITS in NON_ZERO {
const LIMBS: usize = nlimbs(BITS);
type U = Uint<BITS, LIMBS>;
proptest!(|(a: U, m: U)| {
assert_eq!(a.pow_mod(U::from(0), m), U::from(1).reduce_mod(m));
assert_eq!(a.pow_mod(U::from(1), m), a.reduce_mod(m));
});
});
}
#[test]
fn test_pow_rules() {
const_for!(BITS in NON_ZERO {
const LIMBS: usize = nlimbs(BITS);
type U = Uint<BITS, LIMBS>;
// TODO: Increase cases when perf is better.
let mut config = Config::default();
// BUG: Proptest still runs 5 cases even if we set it to 1.
config.cases = min(config.cases, if BITS > 500 { 1 } else { 3 });
proptest!(config, |(a: U, b: U, c: U, m: U)| {
// TODO: a^(b+c) = a^b * a^c. Which requires carmichael fn.
// TODO: (a^b)^c = a^(b * c). Which requires carmichael fn.
assert_eq!(a.mul_mod(b, m).pow_mod(c, m), a.pow_mod(c, m).mul_mod(b.pow_mod(c, m), m));
});
});
}
#[test]
fn test_inv() {
const_for!(BITS in NON_ZERO {
const LIMBS: usize = nlimbs(BITS);
type U = Uint<BITS, LIMBS>;
// TODO: Increase cases when perf is better.
let mut config = Config::default();
config.cases = min(config.cases, if BITS > 500 { 6 } else { 20 });
proptest!(config, |(a: U, m: U)| {
if let Some(inv) = a.inv_mod(m) {
assert_eq!(a.mul_mod(inv, m), U::from(1));
}
});
});
}
#[test]
fn test_mul_redc() {
const_for!(BITS in NON_ZERO if (BITS >= 16) {
const LIMBS: usize = nlimbs(BITS);
type U = Uint<BITS, LIMBS>;
proptest!(|(a: U, b: U, m: U)| {
prop_assume!(m >= U::from(2));
if let Some(inv) = U64::from(m.as_limbs()[0]).inv_ring() {
let inv = (-inv).as_limbs()[0];
let r = U::from(2).pow_mod(U::from(64 * LIMBS), m);
let ar = a.mul_mod(r, m);
let br = b.mul_mod(r, m);
// TODO: Test for larger (>= m) values of a, b.
let expected = a.mul_mod(b, m).mul_mod(r, m);
assert_eq!(ar.mul_redc(br, m, inv), expected);
}
});
});
}
}