1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
use crate::Uint;
impl<const BITS: usize, const LIMBS: usize> Uint<BITS, LIMBS> {
/// Raises self to the power of `exp`.
///
/// Returns None if the result would overflow.
#[inline]
#[must_use]
pub fn checked_pow(self, exp: Self) -> Option<Self> {
match self.overflowing_pow(exp) {
(x, false) => Some(x),
(_, true) => None,
}
}
/// Raises self to the power of `exp` and if the result would overflow.
///
/// # Examples
///
/// ```
/// # use ruint::{Uint, uint};
/// # uint!{
/// assert_eq!(
/// 36_U64.overflowing_pow(12_U64),
/// (0x41c21cb8e1000000_U64, false)
/// );
/// assert_eq!(
/// 36_U64.overflowing_pow(13_U64),
/// (0x3f4c09ffa4000000_U64, true)
/// );
/// assert_eq!(
/// 36_U68.overflowing_pow(13_U68),
/// (0x093f4c09ffa4000000_U68, false)
/// );
/// assert_eq!(16_U65.overflowing_pow(32_U65), (0_U65, true));
/// # }
/// ```
/// Small cases:
/// ```
/// # use ruint::{Uint, uint};
/// # uint!{
/// assert_eq!(0_U0.overflowing_pow(0_U0), (0_U0, false));
/// assert_eq!(0_U1.overflowing_pow(0_U1), (1_U1, false));
/// assert_eq!(0_U1.overflowing_pow(1_U1), (0_U1, false));
/// assert_eq!(1_U1.overflowing_pow(0_U1), (1_U1, false));
/// assert_eq!(1_U1.overflowing_pow(1_U1), (1_U1, false));
/// # }
/// ```
#[inline]
#[must_use]
pub fn overflowing_pow(mut self, mut exp: Self) -> (Self, bool) {
if BITS == 0 {
return (self, false);
}
// Exponentiation by squaring
let mut overflow = false;
let mut base_overflow = false;
let mut result = Self::from(1);
while exp != Self::ZERO {
// Multiply by base
if exp.bit(0) {
let (r, o) = result.overflowing_mul(self);
result = r;
overflow |= o | base_overflow;
}
// Square base
let (s, o) = self.overflowing_mul(self);
self = s;
base_overflow |= o;
exp >>= 1;
}
(result, overflow)
}
/// Raises self to the power of `exp`, wrapping around on overflow.
#[inline]
#[must_use]
pub fn pow(self, exp: Self) -> Self {
self.wrapping_pow(exp)
}
/// Raises self to the power of `exp`, saturating on overflow.
#[inline]
#[must_use]
pub fn saturating_pow(self, exp: Self) -> Self {
match self.overflowing_pow(exp) {
(x, false) => x,
(_, true) => Self::MAX,
}
}
/// Raises self to the power of `exp`, wrapping around on overflow.
#[inline]
#[must_use]
pub fn wrapping_pow(mut self, mut exp: Self) -> Self {
if BITS == 0 {
return self;
}
// Exponentiation by squaring
let mut result = Self::from(1);
while exp != Self::ZERO {
// Multiply by base
if exp.bit(0) {
result = result.wrapping_mul(self);
}
// Square base
self = self.wrapping_mul(self);
exp >>= 1;
}
result
}
/// Construct from double precision binary logarithm.
///
/// # Examples
///
/// ```
/// # use ruint::{Uint, uint, aliases::*};
/// # uint!{
/// assert_eq!(U64::approx_pow2(-2.0), Some(0_U64));
/// assert_eq!(U64::approx_pow2(-1.0), Some(1_U64));
/// assert_eq!(U64::approx_pow2(0.0), Some(1_U64));
/// assert_eq!(U64::approx_pow2(1.0), Some(2_U64));
/// assert_eq!(U64::approx_pow2(1.6), Some(3_U64));
/// assert_eq!(U64::approx_pow2(2.0), Some(4_U64));
/// assert_eq!(U64::approx_pow2(64.0), None);
/// assert_eq!(U64::approx_pow2(10.385), Some(1337_U64));
/// # }
/// ```
#[cfg(feature = "std")]
#[must_use]
#[allow(clippy::missing_inline_in_public_items)]
pub fn approx_pow2(exp: f64) -> Option<Self> {
const LN2_1P5: f64 = 0.584_962_500_721_156_2_f64;
const EXP2_63: f64 = 9_223_372_036_854_775_808_f64;
// FEATURE: Round negative to zero.
#[allow(clippy::cast_precision_loss)] // Self::BITS ~< 2^52 and so fits f64.
if exp < LN2_1P5 {
if exp < -1.0 {
return Some(Self::ZERO);
}
return Self::try_from(1).ok();
}
#[allow(clippy::cast_precision_loss)]
if exp > Self::BITS as f64 {
return None;
}
// Since exp < BITS, it has an integer and fractional part.
#[allow(clippy::cast_possible_truncation)] // exp <= BITS <= usize::MAX.
#[allow(clippy::cast_sign_loss)] // exp >= 0.
let shift = exp.trunc() as usize;
let fract = exp.fract();
// Compute the leading 64 bits
// Since `fract < 1.0` we have `fract.exp2() < 2`, so we can rescale by
// 2^63 and cast to u64.
#[allow(clippy::cast_possible_truncation)] // fract < 1.0
#[allow(clippy::cast_sign_loss)] // fract >= 0.
let bits = (fract.exp2() * EXP2_63) as u64;
// Note: If `fract` is zero this will result in `u64::MAX`.
if shift >= 63 {
// OPT: A dedicated function avoiding full-sized shift.
Some(Self::try_from(bits).ok()?.checked_shl(shift - 63)?)
} else {
let shift = 63 - shift;
// Divide `bits` by `2^shift`, rounding to nearest.
let bits = (bits >> shift) + ((bits >> (shift - 1)) & 1);
Self::try_from(bits).ok()
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{const_for, nlimbs};
use core::iter::repeat;
use proptest::proptest;
#[test]
fn test_pow2_shl() {
const_for!(BITS in NON_ZERO if (BITS >= 2) {
const LIMBS: usize = nlimbs(BITS);
type U = Uint<BITS, LIMBS>;
proptest!(|(e in 0..=BITS+1)| {
assert_eq!(U::from(2).pow(U::from(e)), U::from(1) << e);
});
});
}
#[test]
fn test_pow_product() {
const_for!(BITS in NON_ZERO if (BITS >= 64) {
const LIMBS: usize = nlimbs(BITS);
type U = Uint<BITS, LIMBS>;
proptest!(|(b in 2_u64..100, e in 0_usize..100)| {
let b = U::from(b);
let prod = repeat(b).take(e).product();
assert_eq!(b.pow(U::from(e)), prod);
});
});
}
}