1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
use bytes::{Bytes, BytesMut};
use scylla_cql::frame::response::result::{
ColumnSpec, PartitionKeyIndex, ResultMetadata, TableSpec,
};
use scylla_cql::frame::types::RawValue;
use scylla_cql::types::serialize::row::{RowSerializationContext, SerializeRow, SerializedValues};
use scylla_cql::types::serialize::SerializationError;
use smallvec::{smallvec, SmallVec};
use std::convert::TryInto;
use std::sync::Arc;
use std::time::Duration;
use thiserror::Error;
use uuid::Uuid;
use super::{PageSize, StatementConfig};
use crate::frame::response::result::PreparedMetadata;
use crate::frame::types::{Consistency, SerialConsistency};
use crate::history::HistoryListener;
use crate::retry_policy::RetryPolicy;
use crate::routing::Token;
use crate::transport::errors::{BadQuery, ProtocolError, QueryError};
use crate::transport::execution_profile::ExecutionProfileHandle;
use crate::transport::partitioner::{Partitioner, PartitionerHasher, PartitionerName};
/// Represents a statement prepared on the server.
///
/// To prepare a statement, simply execute [`Session::prepare`](crate::transport::session::Session::prepare).
///
/// If you plan on reusing the statement, or bounding some values to it during execution, always
/// prefer using prepared statements over `Session::query_*` methods,
/// e.g. [`Session::query_unpaged`](crate::transport::session::Session::query_unpaged).
///
/// Benefits that prepared statements have to offer:
/// * Performance - a prepared statement holds information about metadata
/// that allows to carry out a statement execution in a type safe manner.
/// When any of `Session::query_*` methods is called with non-empty bound values,
/// the driver has to prepare the statement before execution (to provide type safety).
/// This implies 2 round trips per [`Session::query_unpaged`](crate::transport::session::Session::query_unpaged).
/// On the other hand, the cost of [`Session::execute_unpaged`](crate::transport::session::Session::execute_unpaged)
/// is only 1 round trip.
/// * Increased type-safety - bound values' types are validated with
/// the [`PreparedMetadata`] received from the server during the serialization.
/// * Improved load balancing - thanks to statement metadata, the driver is able
/// to compute a set of destined replicas for the statement execution. These replicas
/// will be preferred when choosing the node (and shard) to send the request to.
/// * Result deserialization optimization - see [`PreparedStatement::set_use_cached_result_metadata`].
///
/// # Clone implementation
/// Cloning a prepared statement is a cheap operation. It only
/// requires copying a couple of small fields and some [Arc] pointers.
/// Always prefer cloning over executing [`Session::prepare`](crate::transport::session::Session::prepare)
/// multiple times to save some roundtrips.
///
/// # Statement repreparation
/// When schema is updated, the server is supposed to invalidate its
/// prepared statement caches. Then, if client tries to execute a given statement,
/// the server will respond with an error. Users should not worry about it, since
/// the driver handles it properly and tries to reprepare the statement.
/// However, there are some cases when client-side prepared statement should be dropped
/// and prepared once again via [`Session::prepare`](crate::transport::session::Session::prepare) -
/// see the mention about altering schema below.
///
/// # Altering schema
/// If for some reason you decided to alter the part of schema that corresponds to given prepared
/// statement, then the corresponding statement (and its copies obtained via [`PreparedStatement::clone`]) should
/// be dropped. The statement should be prepared again.
///
/// There are two reasons for this:
///
/// ### CQL v4 protocol limitations
/// The driver only supports CQL version 4.
///
/// In multi-client scenario, only the first client which reprepares the statement
/// will receive the updated metadata from the server.
/// The rest of the clients will still hold on the outdated metadata.
/// In version 4 of CQL protocol there is currently no way for the server to notify other
/// clients about prepared statement's metadata update.
///
/// ### Client-side metadata immutability
/// The decision was made to keep client-side metadata immutable.
/// Mainly because of the CQLv4 limitations mentioned above. This means
/// that metadata is not updated during statement repreparation.
/// This raises two issues:
/// * bound values serialization errors - since [`PreparedMetadata`] is not updated
/// * result deserialization errors - when [`PreparedStatement::set_use_cached_result_metadata`] is enabled,
/// since [`ResultMetadata`] is not updated
///
/// So, to mitigate those issues, drop the outdated [`PreparedStatement`] manually
/// and prepare it again against the new schema.
#[derive(Debug)]
pub struct PreparedStatement {
pub(crate) config: StatementConfig,
pub prepare_tracing_ids: Vec<Uuid>,
id: Bytes,
shared: Arc<PreparedStatementSharedData>,
page_size: PageSize,
partitioner_name: PartitionerName,
is_confirmed_lwt: bool,
}
#[derive(Debug)]
struct PreparedStatementSharedData {
metadata: PreparedMetadata,
result_metadata: Arc<ResultMetadata<'static>>,
statement: String,
}
impl Clone for PreparedStatement {
fn clone(&self) -> Self {
Self {
config: self.config.clone(),
prepare_tracing_ids: Vec::new(),
id: self.id.clone(),
shared: self.shared.clone(),
page_size: self.page_size,
partitioner_name: self.partitioner_name.clone(),
is_confirmed_lwt: self.is_confirmed_lwt,
}
}
}
impl PreparedStatement {
pub(crate) fn new(
id: Bytes,
is_lwt: bool,
metadata: PreparedMetadata,
result_metadata: Arc<ResultMetadata<'static>>,
statement: String,
page_size: PageSize,
config: StatementConfig,
) -> Self {
Self {
id,
shared: Arc::new(PreparedStatementSharedData {
metadata,
result_metadata,
statement,
}),
prepare_tracing_ids: Vec::new(),
page_size,
config,
partitioner_name: Default::default(),
is_confirmed_lwt: is_lwt,
}
}
pub fn get_id(&self) -> &Bytes {
&self.id
}
pub fn get_statement(&self) -> &str {
&self.shared.statement
}
/// Sets the page size for this CQL query.
///
/// Panics if given number is nonpositive.
pub fn set_page_size(&mut self, page_size: i32) {
self.page_size = page_size
.try_into()
.unwrap_or_else(|err| panic!("PreparedStatement::set_page_size: {err}"));
}
/// Returns the page size for this CQL query.
pub(crate) fn get_validated_page_size(&self) -> PageSize {
self.page_size
}
/// Returns the page size for this CQL query.
pub fn get_page_size(&self) -> i32 {
self.page_size.inner()
}
/// Gets tracing ids of queries used to prepare this statement
pub fn get_prepare_tracing_ids(&self) -> &[Uuid] {
&self.prepare_tracing_ids
}
/// Returns true if the prepared statement has necessary information
/// to be routed in a token-aware manner. If false, the query
/// will always be sent to a random node/shard.
pub fn is_token_aware(&self) -> bool {
!self.get_prepared_metadata().pk_indexes.is_empty()
}
/// Returns true if it is known that the prepared statement contains
/// a Lightweight Transaction. If so, the optimisation can be performed:
/// the query should be routed to the replicas in a predefined order
/// (i. e. always try first to contact replica A, then B if it fails,
/// then C, etc.). If false, the query should be routed normally.
/// Note: this a Scylla-specific optimisation. Therefore, the result
/// will be always false for Cassandra.
pub fn is_confirmed_lwt(&self) -> bool {
self.is_confirmed_lwt
}
/// Computes the partition key of the target table from given values —
/// it assumes that all partition key columns are passed in values.
/// Partition keys have specific serialization rules.
/// Ref: <https://github.com/scylladb/scylla/blob/40adf38915b6d8f5314c621a94d694d172360833/compound_compat.hh#L33-L47>
///
/// Note: this is no longer required to compute a token. This is because partitioners
/// are now stateful and stream-based, so they do not require materialised partition key.
/// Therefore, for computing a token, there are more efficient methods, such as
/// [Self::calculate_token()].
pub fn compute_partition_key(
&self,
bound_values: &impl SerializeRow,
) -> Result<Bytes, PartitionKeyError> {
let serialized = self.serialize_values(bound_values)?;
let partition_key = self.extract_partition_key(&serialized)?;
let mut buf = BytesMut::new();
let mut writer = |chunk: &[u8]| buf.extend_from_slice(chunk);
partition_key.write_encoded_partition_key(&mut writer)?;
Ok(buf.freeze())
}
/// Determines which values constitute the partition key and puts them in order.
///
/// This is a preparation step necessary for calculating token based on a prepared statement.
pub(crate) fn extract_partition_key<'ps>(
&'ps self,
bound_values: &'ps SerializedValues,
) -> Result<PartitionKey<'ps>, PartitionKeyExtractionError> {
PartitionKey::new(self.get_prepared_metadata(), bound_values)
}
pub(crate) fn extract_partition_key_and_calculate_token<'ps>(
&'ps self,
partitioner_name: &'ps PartitionerName,
serialized_values: &'ps SerializedValues,
) -> Result<Option<(PartitionKey<'ps>, Token)>, QueryError> {
if !self.is_token_aware() {
return Ok(None);
}
let partition_key =
self.extract_partition_key(serialized_values)
.map_err(|err| match err {
PartitionKeyExtractionError::NoPkIndexValue(_, _) => {
ProtocolError::PartitionKeyExtraction
}
})?;
let token = partition_key
.calculate_token(partitioner_name)
.map_err(|err| match err {
TokenCalculationError::ValueTooLong(values_len) => {
QueryError::BadQuery(BadQuery::ValuesTooLongForKey(values_len, u16::MAX.into()))
}
})?;
Ok(Some((partition_key, token)))
}
/// Calculates the token for given prepared statement and values.
///
/// Returns the token that would be computed for executing the provided
/// prepared statement with the provided values.
// As this function creates a `PartitionKey`, it is intended rather for external usage (by users).
// For internal purposes, `PartitionKey::calculate_token()` is preferred, as `PartitionKey`
// is either way used internally, among others for display in traces.
pub fn calculate_token(&self, values: &impl SerializeRow) -> Result<Option<Token>, QueryError> {
self.calculate_token_untyped(&self.serialize_values(values)?)
}
// A version of calculate_token which skips serialization and uses SerializedValues directly.
// Not type-safe, so not exposed to users.
pub(crate) fn calculate_token_untyped(
&self,
values: &SerializedValues,
) -> Result<Option<Token>, QueryError> {
self.extract_partition_key_and_calculate_token(&self.partitioner_name, values)
.map(|opt| opt.map(|(_pk, token)| token))
}
/// Return keyspace name and table name this statement is operating on.
pub fn get_table_spec(&self) -> Option<&TableSpec> {
self.get_prepared_metadata()
.col_specs
.first()
.map(|spec| spec.table_spec())
}
/// Returns the name of the keyspace this statement is operating on.
pub fn get_keyspace_name(&self) -> Option<&str> {
self.get_prepared_metadata()
.col_specs
.first()
.map(|col_spec| col_spec.table_spec().ks_name())
}
/// Returns the name of the table this statement is operating on.
pub fn get_table_name(&self) -> Option<&str> {
self.get_prepared_metadata()
.col_specs
.first()
.map(|col_spec| col_spec.table_spec().table_name())
}
/// Sets the consistency to be used when executing this statement.
pub fn set_consistency(&mut self, c: Consistency) {
self.config.consistency = Some(c);
}
/// Gets the consistency to be used when executing this prepared statement if it is filled.
/// If this is empty, the default_consistency of the session will be used.
pub fn get_consistency(&self) -> Option<Consistency> {
self.config.consistency
}
/// Sets the serial consistency to be used when executing this statement.
/// (Ignored unless the statement is an LWT)
pub fn set_serial_consistency(&mut self, sc: Option<SerialConsistency>) {
self.config.serial_consistency = Some(sc);
}
/// Gets the serial consistency to be used when executing this statement.
/// (Ignored unless the statement is an LWT)
pub fn get_serial_consistency(&self) -> Option<SerialConsistency> {
self.config.serial_consistency.flatten()
}
/// Sets the idempotence of this statement
/// A query is idempotent if it can be applied multiple times without changing the result of the initial application
/// If set to `true` we can be sure that it is idempotent
/// If set to `false` it is unknown whether it is idempotent
/// This is used in [`RetryPolicy`] to decide if retrying a query is safe
pub fn set_is_idempotent(&mut self, is_idempotent: bool) {
self.config.is_idempotent = is_idempotent;
}
/// Gets the idempotence of this statement
pub fn get_is_idempotent(&self) -> bool {
self.config.is_idempotent
}
/// Enable or disable CQL Tracing for this statement
/// If enabled session.execute() will return a QueryResult containing tracing_id
/// which can be used to query tracing information about the execution of this query
pub fn set_tracing(&mut self, should_trace: bool) {
self.config.tracing = should_trace;
}
/// Gets whether tracing is enabled for this statement
pub fn get_tracing(&self) -> bool {
self.config.tracing
}
/// Make use of cached metadata to decode results
/// of the statement's execution.
///
/// If true, the driver will request the server not to
/// attach the result metadata in response to the statement execution.
///
/// The driver will cache the result metadata received from the server
/// after statement preparation and will use it
/// to deserialize the results of statement execution.
///
/// This option is false by default.
pub fn set_use_cached_result_metadata(&mut self, use_cached_metadata: bool) {
self.config.skip_result_metadata = use_cached_metadata;
}
/// Gets the information whether the driver uses cached metadata
/// to decode the results of the statement's execution.
pub fn get_use_cached_result_metadata(&self) -> bool {
self.config.skip_result_metadata
}
/// Sets the default timestamp for this statement in microseconds.
/// If not None, it will replace the server side assigned timestamp as default timestamp
/// If a statement contains a `USING TIMESTAMP` clause, calling this method won't change
/// anything
pub fn set_timestamp(&mut self, timestamp: Option<i64>) {
self.config.timestamp = timestamp
}
/// Gets the default timestamp for this statement in microseconds.
pub fn get_timestamp(&self) -> Option<i64> {
self.config.timestamp
}
/// Sets the client-side timeout for this statement.
/// If not None, the driver will stop waiting for the request
/// to finish after `timeout` passed.
/// Otherwise, default session client timeout will be applied.
pub fn set_request_timeout(&mut self, timeout: Option<Duration>) {
self.config.request_timeout = timeout
}
/// Gets client timeout associated with this query
pub fn get_request_timeout(&self) -> Option<Duration> {
self.config.request_timeout
}
/// Sets the name of the partitioner used for this statement.
pub(crate) fn set_partitioner_name(&mut self, partitioner_name: PartitionerName) {
self.partitioner_name = partitioner_name;
}
/// Access metadata about the bind variables of this statement as returned by the database
pub(crate) fn get_prepared_metadata(&self) -> &PreparedMetadata {
&self.shared.metadata
}
/// Access column specifications of the bind variables of this statement
pub fn get_variable_col_specs(&self) -> &[ColumnSpec<'static>] {
&self.shared.metadata.col_specs
}
/// Access info about partition key indexes of the bind variables of this statement
pub fn get_variable_pk_indexes(&self) -> &[PartitionKeyIndex] {
&self.shared.metadata.pk_indexes
}
/// Access metadata about the result of prepared statement returned by the database
pub(crate) fn get_result_metadata(&self) -> &Arc<ResultMetadata<'static>> {
&self.shared.result_metadata
}
/// Access column specifications of the result set returned after the execution of this statement
pub fn get_result_set_col_specs(&self) -> &[ColumnSpec<'static>] {
self.shared.result_metadata.col_specs()
}
/// Get the name of the partitioner used for this statement.
pub(crate) fn get_partitioner_name(&self) -> &PartitionerName {
&self.partitioner_name
}
/// Set the retry policy for this statement, overriding the one from execution profile if not None.
#[inline]
pub fn set_retry_policy(&mut self, retry_policy: Option<Arc<dyn RetryPolicy>>) {
self.config.retry_policy = retry_policy;
}
/// Get the retry policy set for the statement.
#[inline]
pub fn get_retry_policy(&self) -> Option<&Arc<dyn RetryPolicy>> {
self.config.retry_policy.as_ref()
}
/// Sets the listener capable of listening what happens during query execution.
pub fn set_history_listener(&mut self, history_listener: Arc<dyn HistoryListener>) {
self.config.history_listener = Some(history_listener);
}
/// Removes the listener set by `set_history_listener`.
pub fn remove_history_listener(&mut self) -> Option<Arc<dyn HistoryListener>> {
self.config.history_listener.take()
}
/// Associates the query with execution profile referred by the provided handle.
/// Handle may be later remapped to another profile, and query will reflect those changes.
pub fn set_execution_profile_handle(&mut self, profile_handle: Option<ExecutionProfileHandle>) {
self.config.execution_profile_handle = profile_handle;
}
/// Borrows the execution profile handle associated with this query.
pub fn get_execution_profile_handle(&self) -> Option<&ExecutionProfileHandle> {
self.config.execution_profile_handle.as_ref()
}
pub(crate) fn serialize_values(
&self,
values: &impl SerializeRow,
) -> Result<SerializedValues, SerializationError> {
let ctx = RowSerializationContext::from_prepared(self.get_prepared_metadata());
SerializedValues::from_serializable(&ctx, values)
}
}
#[derive(Clone, Debug, Error, PartialEq, Eq, PartialOrd, Ord)]
pub enum PartitionKeyExtractionError {
#[error("No value with given pk_index! pk_index: {0}, values.len(): {1}")]
NoPkIndexValue(u16, u16),
}
#[derive(Clone, Debug, Error, PartialEq, Eq, PartialOrd, Ord)]
pub enum TokenCalculationError {
#[error("Value bytes too long to create partition key, max 65 535 allowed! value.len(): {0}")]
ValueTooLong(usize),
}
#[derive(Clone, Debug, Error)]
pub enum PartitionKeyError {
#[error(transparent)]
PartitionKeyExtraction(PartitionKeyExtractionError),
#[error(transparent)]
TokenCalculation(TokenCalculationError),
#[error(transparent)]
Serialization(SerializationError),
}
impl From<PartitionKeyExtractionError> for PartitionKeyError {
fn from(err: PartitionKeyExtractionError) -> Self {
Self::PartitionKeyExtraction(err)
}
}
impl From<TokenCalculationError> for PartitionKeyError {
fn from(err: TokenCalculationError) -> Self {
Self::TokenCalculation(err)
}
}
impl From<SerializationError> for PartitionKeyError {
fn from(err: SerializationError) -> Self {
Self::Serialization(err)
}
}
pub(crate) type PartitionKeyValue<'ps> = (&'ps [u8], &'ps ColumnSpec<'ps>);
pub(crate) struct PartitionKey<'ps> {
pk_values: SmallVec<[Option<PartitionKeyValue<'ps>>; PartitionKey::SMALLVEC_ON_STACK_SIZE]>,
}
impl<'ps> PartitionKey<'ps> {
const SMALLVEC_ON_STACK_SIZE: usize = 8;
fn new(
prepared_metadata: &'ps PreparedMetadata,
bound_values: &'ps SerializedValues,
) -> Result<Self, PartitionKeyExtractionError> {
// Iterate on values using sorted pk_indexes (see deser_prepared_metadata),
// and use PartitionKeyIndex.sequence to insert the value in pk_values with the correct order.
let mut pk_values: SmallVec<[_; PartitionKey::SMALLVEC_ON_STACK_SIZE]> =
smallvec![None; prepared_metadata.pk_indexes.len()];
let mut values_iter = bound_values.iter();
// pk_indexes contains the indexes of the partition key value, so the current offset of the
// iterator must be kept, in order to compute the next position of the pk in the iterator.
// At each iteration values_iter.nth(0) will roughly correspond to values[values_iter_offset],
// so values[pk_index.index] will be retrieved with values_iter.nth(pk_index.index - values_iter_offset)
let mut values_iter_offset = 0;
for pk_index in prepared_metadata.pk_indexes.iter().copied() {
// Find value matching current pk_index
let next_val = values_iter
.nth((pk_index.index - values_iter_offset) as usize)
.ok_or_else(|| {
PartitionKeyExtractionError::NoPkIndexValue(
pk_index.index,
bound_values.element_count(),
)
})?;
// Add it in sequence order to pk_values
if let RawValue::Value(v) = next_val {
let spec = &prepared_metadata.col_specs[pk_index.index as usize];
pk_values[pk_index.sequence as usize] = Some((v, spec));
}
values_iter_offset = pk_index.index + 1;
}
Ok(Self { pk_values })
}
pub(crate) fn iter(&self) -> impl Iterator<Item = PartitionKeyValue<'ps>> + Clone + '_ {
self.pk_values.iter().flatten().copied()
}
fn write_encoded_partition_key(
&self,
writer: &mut impl FnMut(&[u8]),
) -> Result<(), TokenCalculationError> {
let mut pk_val_iter = self.iter().map(|(val, _spec)| val);
if let Some(first_value) = pk_val_iter.next() {
if let Some(second_value) = pk_val_iter.next() {
// Composite partition key case
for value in std::iter::once(first_value)
.chain(std::iter::once(second_value))
.chain(pk_val_iter)
{
let v_len_u16: u16 = value
.len()
.try_into()
.map_err(|_| TokenCalculationError::ValueTooLong(value.len()))?;
writer(&v_len_u16.to_be_bytes());
writer(value);
writer(&[0u8]);
}
} else {
// Single-value partition key case
writer(first_value);
}
}
Ok(())
}
pub(crate) fn calculate_token(
&self,
partitioner_name: &PartitionerName,
) -> Result<Token, TokenCalculationError> {
let mut partitioner_hasher = partitioner_name.build_hasher();
let mut writer = |chunk: &[u8]| partitioner_hasher.write(chunk);
self.write_encoded_partition_key(&mut writer)?;
Ok(partitioner_hasher.finish())
}
}
#[cfg(test)]
mod tests {
use scylla_cql::{
frame::response::result::{
ColumnSpec, ColumnType, PartitionKeyIndex, PreparedMetadata, TableSpec,
},
types::serialize::row::SerializedValues,
};
use crate::{prepared_statement::PartitionKey, test_utils::setup_tracing};
fn make_meta(
cols: impl IntoIterator<Item = ColumnType<'static>>,
idx: impl IntoIterator<Item = usize>,
) -> PreparedMetadata {
let table_spec = TableSpec::owned("ks".to_owned(), "t".to_owned());
let col_specs: Vec<_> = cols
.into_iter()
.enumerate()
.map(|(i, typ)| ColumnSpec::owned(format!("col_{}", i), typ, table_spec.clone()))
.collect();
let mut pk_indexes = idx
.into_iter()
.enumerate()
.map(|(sequence, index)| PartitionKeyIndex {
index: index as u16,
sequence: sequence as u16,
})
.collect::<Vec<_>>();
pk_indexes.sort_unstable_by_key(|pki| pki.index);
PreparedMetadata {
flags: 0,
col_count: col_specs.len(),
col_specs,
pk_indexes,
}
}
#[test]
fn test_partition_key_multiple_columns_shuffled() {
setup_tracing();
let meta = make_meta(
[
ColumnType::TinyInt,
ColumnType::SmallInt,
ColumnType::Int,
ColumnType::BigInt,
ColumnType::Blob,
],
[4, 0, 3],
);
let mut values = SerializedValues::new();
values.add_value(&67i8, &ColumnType::TinyInt).unwrap();
values.add_value(&42i16, &ColumnType::SmallInt).unwrap();
values.add_value(&23i32, &ColumnType::Int).unwrap();
values.add_value(&89i64, &ColumnType::BigInt).unwrap();
values
.add_value(&[1u8, 2, 3, 4, 5], &ColumnType::Blob)
.unwrap();
let pk = PartitionKey::new(&meta, &values).unwrap();
let pk_cols = Vec::from_iter(pk.iter());
assert_eq!(
pk_cols,
vec![
([1u8, 2, 3, 4, 5].as_slice(), &meta.col_specs[4]),
(67i8.to_be_bytes().as_ref(), &meta.col_specs[0]),
(89i64.to_be_bytes().as_ref(), &meta.col_specs[3]),
]
);
}
}