1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/// Cluster manages up to date information and connections to database nodes
use crate::frame::response::event::{Event, StatusChangeEvent};
use crate::prepared_statement::TokenCalculationError;
use crate::routing::{Shard, Token};
use crate::transport::errors::{BadQuery, NewSessionError, QueryError};
use crate::transport::host_filter::HostFilter;
use crate::transport::session::TABLET_CHANNEL_SIZE;
use crate::transport::{
connection::{Connection, VerifiedKeyspaceName},
connection_pool::PoolConfig,
node::Node,
partitioner::PartitionerName,
topology::{Keyspace, Metadata, MetadataReader},
};
use arc_swap::ArcSwap;
use futures::future::join_all;
use futures::{future::RemoteHandle, FutureExt};
use itertools::Itertools;
use scylla_cql::frame::response::result::TableSpec;
use scylla_cql::types::serialize::row::SerializedValues;
use std::collections::{HashMap, HashSet};
use std::net::SocketAddr;
use std::sync::Arc;
use std::time::Duration;
use tracing::{debug, warn};
use uuid::Uuid;
use super::locator::tablets::{RawTablet, Tablet, TabletsInfo};
use super::node::{InternalKnownNode, NodeAddr};
use super::NodeRef;
use super::locator::ReplicaLocator;
use super::partitioner::calculate_token_for_partition_key;
use super::topology::Strategy;
/// Cluster manages up to date information and connections to database nodes.
/// All data can be accessed by cloning Arc<ClusterData> in the `data` field
//
// NOTE: This structure was intentionally made cloneable. The reason for this
// is to make it possible to use two different Session APIs in the same program
// that share the same session resources.
//
// It is safe to do because the Cluster struct is just a facade for the real,
// "semantic" Cluster object. Cloned instance of this struct will use the same
// ClusterData and worker and will observe the same state.
//
// TODO: revert this commit (one making Cluster clonable) once the legacy
// deserialization API is removed.
#[derive(Clone)]
pub(crate) struct Cluster {
// `ArcSwap<ClusterData>` is wrapped in `Arc` to support sharing cluster data
// between `Cluster` and `ClusterWorker`
data: Arc<ArcSwap<ClusterData>>,
refresh_channel: tokio::sync::mpsc::Sender<RefreshRequest>,
use_keyspace_channel: tokio::sync::mpsc::Sender<UseKeyspaceRequest>,
_worker_handle: Arc<RemoteHandle<()>>,
}
/// Enables printing [Cluster] struct in a neat way, by skipping the rather useless
/// print of channels state and printing [ClusterData] neatly.
pub(crate) struct ClusterNeatDebug<'a>(pub(crate) &'a Cluster);
impl std::fmt::Debug for ClusterNeatDebug<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let cluster = self.0;
f.debug_struct("Cluster")
.field("data", &ClusterDataNeatDebug(&cluster.data.load()))
.finish_non_exhaustive()
}
}
#[derive(Clone)]
pub struct ClusterData {
pub(crate) known_peers: HashMap<Uuid, Arc<Node>>, // Invariant: nonempty after Cluster::new()
pub(crate) keyspaces: HashMap<String, Keyspace>,
pub(crate) locator: ReplicaLocator,
}
/// Enables printing [ClusterData] struct in a neat way, skipping the clutter involved by
/// [ClusterData::ring] being large and [Self::keyspaces] debug print being very verbose by default.
pub(crate) struct ClusterDataNeatDebug<'a>(pub(crate) &'a Arc<ClusterData>);
impl std::fmt::Debug for ClusterDataNeatDebug<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let cluster_data = &self.0;
f.debug_struct("ClusterData")
.field("known_peers", &cluster_data.known_peers)
.field("ring", {
struct RingSizePrinter(usize);
impl std::fmt::Debug for RingSizePrinter {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "<size={}>", self.0)
}
}
&RingSizePrinter(cluster_data.locator.ring().len())
})
.field("keyspaces", &cluster_data.keyspaces.keys())
.finish_non_exhaustive()
}
}
// Works in the background to keep the cluster updated
struct ClusterWorker {
// Cluster data to keep updated:
cluster_data: Arc<ArcSwap<ClusterData>>,
// Cluster connections
metadata_reader: MetadataReader,
pool_config: PoolConfig,
// To listen for refresh requests
refresh_channel: tokio::sync::mpsc::Receiver<RefreshRequest>,
// Channel used to receive use keyspace requests
use_keyspace_channel: tokio::sync::mpsc::Receiver<UseKeyspaceRequest>,
// Channel used to receive server events
server_events_channel: tokio::sync::mpsc::Receiver<Event>,
// Channel used to receive signals that control connection is broken
control_connection_repair_channel: tokio::sync::broadcast::Receiver<()>,
// Channel used to receive info about new tablets from custom payload in responses
// sent by server.
tablets_channel: tokio::sync::mpsc::Receiver<(TableSpec<'static>, RawTablet)>,
// Keyspace send in "USE <keyspace name>" when opening each connection
used_keyspace: Option<VerifiedKeyspaceName>,
// The host filter determines towards which nodes we should open
// connections
host_filter: Option<Arc<dyn HostFilter>>,
// This value determines how frequently the cluster
// worker will refresh the cluster metadata
cluster_metadata_refresh_interval: Duration,
}
#[derive(Debug)]
struct RefreshRequest {
response_chan: tokio::sync::oneshot::Sender<Result<(), QueryError>>,
}
#[derive(Debug)]
struct UseKeyspaceRequest {
keyspace_name: VerifiedKeyspaceName,
response_chan: tokio::sync::oneshot::Sender<Result<(), QueryError>>,
}
impl Cluster {
pub(crate) async fn new(
known_nodes: Vec<InternalKnownNode>,
pool_config: PoolConfig,
keyspaces_to_fetch: Vec<String>,
fetch_schema_metadata: bool,
host_filter: Option<Arc<dyn HostFilter>>,
cluster_metadata_refresh_interval: Duration,
tablet_receiver: tokio::sync::mpsc::Receiver<(TableSpec<'static>, RawTablet)>,
) -> Result<Cluster, NewSessionError> {
let (refresh_sender, refresh_receiver) = tokio::sync::mpsc::channel(32);
let (use_keyspace_sender, use_keyspace_receiver) = tokio::sync::mpsc::channel(32);
let (server_events_sender, server_events_receiver) = tokio::sync::mpsc::channel(32);
let (control_connection_repair_sender, control_connection_repair_receiver) =
tokio::sync::broadcast::channel(32);
let mut metadata_reader = MetadataReader::new(
known_nodes,
control_connection_repair_sender,
pool_config.connection_config.clone(),
pool_config.keepalive_interval,
server_events_sender,
keyspaces_to_fetch,
fetch_schema_metadata,
&host_filter,
)
.await?;
let metadata = metadata_reader.read_metadata(true).await?;
let cluster_data = ClusterData::new(
metadata,
&pool_config,
&HashMap::new(),
&None,
host_filter.as_deref(),
TabletsInfo::new(),
)
.await;
cluster_data.wait_until_all_pools_are_initialized().await;
let cluster_data: Arc<ArcSwap<ClusterData>> =
Arc::new(ArcSwap::from(Arc::new(cluster_data)));
let worker = ClusterWorker {
cluster_data: cluster_data.clone(),
metadata_reader,
pool_config,
refresh_channel: refresh_receiver,
server_events_channel: server_events_receiver,
control_connection_repair_channel: control_connection_repair_receiver,
tablets_channel: tablet_receiver,
use_keyspace_channel: use_keyspace_receiver,
used_keyspace: None,
host_filter,
cluster_metadata_refresh_interval,
};
let (fut, worker_handle) = worker.work().remote_handle();
tokio::spawn(fut);
let result = Cluster {
data: cluster_data,
refresh_channel: refresh_sender,
use_keyspace_channel: use_keyspace_sender,
_worker_handle: Arc::new(worker_handle),
};
Ok(result)
}
pub(crate) fn get_data(&self) -> Arc<ClusterData> {
self.data.load_full()
}
pub(crate) async fn refresh_metadata(&self) -> Result<(), QueryError> {
let (response_sender, response_receiver) = tokio::sync::oneshot::channel();
self.refresh_channel
.send(RefreshRequest {
response_chan: response_sender,
})
.await
.expect("Bug in Cluster::refresh_metadata sending");
// Other end of this channel is in ClusterWorker, can't be dropped while we have &self to Cluster with _worker_handle
response_receiver
.await
.expect("Bug in Cluster::refresh_metadata receiving")
// ClusterWorker always responds
}
pub(crate) async fn use_keyspace(
&self,
keyspace_name: VerifiedKeyspaceName,
) -> Result<(), QueryError> {
let (response_sender, response_receiver) = tokio::sync::oneshot::channel();
self.use_keyspace_channel
.send(UseKeyspaceRequest {
keyspace_name,
response_chan: response_sender,
})
.await
.expect("Bug in Cluster::use_keyspace sending");
// Other end of this channel is in ClusterWorker, can't be dropped while we have &self to Cluster with _worker_handle
response_receiver.await.unwrap() // ClusterWorker always responds
}
}
impl ClusterData {
pub(crate) async fn wait_until_all_pools_are_initialized(&self) {
for node in self.locator.unique_nodes_in_global_ring().iter() {
node.wait_until_pool_initialized().await;
}
}
/// Creates new ClusterData using information about topology held in `metadata`.
/// Uses provided `known_peers` hashmap to recycle nodes if possible.
pub(crate) async fn new(
metadata: Metadata,
pool_config: &PoolConfig,
known_peers: &HashMap<Uuid, Arc<Node>>,
used_keyspace: &Option<VerifiedKeyspaceName>,
host_filter: Option<&dyn HostFilter>,
mut tablets: TabletsInfo,
) -> Self {
// Create new updated known_peers and ring
let mut new_known_peers: HashMap<Uuid, Arc<Node>> =
HashMap::with_capacity(metadata.peers.len());
let mut ring: Vec<(Token, Arc<Node>)> = Vec::new();
for peer in metadata.peers {
// Take existing Arc<Node> if possible, otherwise create new one
// Changing rack/datacenter but not ip address seems improbable
// so we can just create new node and connections then
let peer_host_id = peer.host_id;
let peer_address = peer.address;
let peer_tokens;
let node: Arc<Node> = match known_peers.get(&peer_host_id) {
Some(node) if node.datacenter == peer.datacenter && node.rack == peer.rack => {
let (peer_endpoint, tokens) = peer.into_peer_endpoint_and_tokens();
peer_tokens = tokens;
if node.address == peer_address {
node.clone()
} else {
// If IP changes, the Node struct is recreated, but the underlying pool is preserved and notified about the IP change.
Arc::new(Node::inherit_with_ip_changed(node, peer_endpoint))
}
}
_ => {
let is_enabled = host_filter.map_or(true, |f| f.accept(&peer));
let (peer_endpoint, tokens) = peer.into_peer_endpoint_and_tokens();
peer_tokens = tokens;
Arc::new(Node::new(
peer_endpoint,
pool_config.clone(),
used_keyspace.clone(),
is_enabled,
))
}
};
new_known_peers.insert(peer_host_id, node.clone());
for token in peer_tokens {
ring.push((token, node.clone()));
}
}
{
let removed_nodes = {
let mut removed_nodes = HashSet::new();
for old_peer in known_peers {
if !new_known_peers.contains_key(old_peer.0) {
removed_nodes.insert(*old_peer.0);
}
}
removed_nodes
};
let table_predicate = |spec: &TableSpec| {
if let Some(ks) = metadata.keyspaces.get(spec.ks_name()) {
ks.tables.contains_key(spec.table_name())
} else {
false
}
};
let recreated_nodes = {
let mut recreated_nodes = HashMap::new();
for (old_peer_id, old_peer_node) in known_peers {
if let Some(new_peer_node) = new_known_peers.get(old_peer_id) {
if !Arc::ptr_eq(old_peer_node, new_peer_node) {
recreated_nodes.insert(*old_peer_id, Arc::clone(new_peer_node));
}
}
}
recreated_nodes
};
tablets.perform_maintenance(
&table_predicate,
&removed_nodes,
&new_known_peers,
&recreated_nodes,
)
}
let keyspaces = metadata.keyspaces;
let (locator, keyspaces) = tokio::task::spawn_blocking(move || {
let keyspace_strategies = keyspaces.values().map(|ks| &ks.strategy);
let locator = ReplicaLocator::new(ring.into_iter(), keyspace_strategies, tablets);
(locator, keyspaces)
})
.await
.unwrap();
ClusterData {
known_peers: new_known_peers,
keyspaces,
locator,
}
}
/// Access keyspaces details collected by the driver
/// Driver collects various schema details like tables, partitioners, columns, types.
/// They can be read using this method
pub fn get_keyspace_info(&self) -> &HashMap<String, Keyspace> {
&self.keyspaces
}
/// Access details about nodes known to the driver
pub fn get_nodes_info(&self) -> &[Arc<Node>] {
self.locator.unique_nodes_in_global_ring()
}
/// Compute token of a table partition key
pub fn compute_token(
&self,
keyspace: &str,
table: &str,
partition_key: &SerializedValues,
) -> Result<Token, BadQuery> {
let partitioner = self
.keyspaces
.get(keyspace)
.and_then(|k| k.tables.get(table))
.and_then(|t| t.partitioner.as_deref())
.and_then(PartitionerName::from_str)
.unwrap_or_default();
calculate_token_for_partition_key(partition_key, &partitioner).map_err(|err| match err {
TokenCalculationError::ValueTooLong(values_len) => {
BadQuery::ValuesTooLongForKey(values_len, u16::MAX.into())
}
})
}
/// Access to replicas owning a given token
pub fn get_token_endpoints(
&self,
keyspace: &str,
table: &str,
token: Token,
) -> Vec<(Arc<Node>, Shard)> {
let table_spec = TableSpec::borrowed(keyspace, table);
self.get_token_endpoints_iter(&table_spec, token)
.map(|(node, shard)| (node.clone(), shard))
.collect()
}
pub(crate) fn get_token_endpoints_iter(
&self,
table_spec: &TableSpec,
token: Token,
) -> impl Iterator<Item = (NodeRef<'_>, Shard)> {
let keyspace = self.keyspaces.get(table_spec.ks_name());
let strategy = keyspace
.map(|k| &k.strategy)
.unwrap_or(&Strategy::LocalStrategy);
let replica_set = self
.replica_locator()
.replicas_for_token(token, strategy, None, table_spec);
replica_set.into_iter()
}
/// Access to replicas owning a given partition key (similar to `nodetool getendpoints`)
pub fn get_endpoints(
&self,
keyspace: &str,
table: &str,
partition_key: &SerializedValues,
) -> Result<Vec<(Arc<Node>, Shard)>, BadQuery> {
let token = self.compute_token(keyspace, table, partition_key)?;
Ok(self.get_token_endpoints(keyspace, table, token))
}
/// Access replica location info
pub fn replica_locator(&self) -> &ReplicaLocator {
&self.locator
}
/// Returns nonempty iterator of working connections to all shards.
pub(crate) fn iter_working_connections(
&self,
) -> Result<impl Iterator<Item = Arc<Connection>> + '_, QueryError> {
// The returned iterator is nonempty by nonemptiness invariant of `self.known_peers`.
assert!(!self.known_peers.is_empty());
let mut peers_iter = self.known_peers.values();
// First we try to find the first working pool of connections.
// If none is found, return error.
let first_working_pool = peers_iter
.by_ref()
.map(|node| node.get_working_connections())
.find_or_first(Result::is_ok)
.expect("impossible: known_peers was asserted to be nonempty")?;
let remaining_pools_iter = peers_iter
.map(|node| node.get_working_connections())
.flatten_ok()
.flatten();
Ok(first_working_pool.into_iter().chain(remaining_pools_iter))
// By an invariant `self.known_peers` is nonempty, so the returned iterator
// is nonempty, too.
}
fn update_tablets(&mut self, raw_tablets: Vec<(TableSpec<'static>, RawTablet)>) {
let replica_translator = |uuid: Uuid| self.known_peers.get(&uuid).cloned();
for (table, raw_tablet) in raw_tablets.into_iter() {
// Should we skip tablets that belong to a keyspace not present in
// self.keyspaces? The keyspace could have been, without driver's knowledge:
// 1. Dropped - in which case we'll remove its info soon (when refreshing
// topology) anyway.
// 2. Created - no harm in storing the info now.
//
// So I think we can safely skip checking keyspace presence.
let tablet = match Tablet::from_raw_tablet(raw_tablet, replica_translator) {
Ok(t) => t,
Err((t, f)) => {
debug!("Nodes ({}) that are replicas for a tablet {{ks: {}, table: {}, range: [{}. {}]}} not present in current ClusterData.known_peers. \
Skipping these replicas until topology refresh",
f.iter().format(", "), table.ks_name(), table.table_name(), t.range().0.value(), t.range().1.value());
t
}
};
self.locator.tablets.add_tablet(table, tablet);
}
}
}
impl ClusterWorker {
pub(crate) async fn work(mut self) {
use tokio::time::Instant;
let control_connection_repair_duration = Duration::from_secs(1); // Attempt control connection repair every second
let mut last_refresh_time = Instant::now();
let mut control_connection_works = true;
loop {
let mut cur_request: Option<RefreshRequest> = None;
// Wait until it's time for the next refresh
let sleep_until: Instant = last_refresh_time
.checked_add(if control_connection_works {
self.cluster_metadata_refresh_interval
} else {
control_connection_repair_duration
})
.unwrap_or_else(Instant::now);
let mut tablets = Vec::new();
let sleep_future = tokio::time::sleep_until(sleep_until);
tokio::pin!(sleep_future);
tokio::select! {
_ = sleep_future => {},
recv_res = self.refresh_channel.recv() => {
match recv_res {
Some(request) => cur_request = Some(request),
None => return, // If refresh_channel was closed then cluster was dropped, we can stop working
}
}
tablets_count = self.tablets_channel.recv_many(&mut tablets, TABLET_CHANNEL_SIZE) => {
tracing::trace!("Performing tablets update - received {} tablets", tablets_count);
if tablets_count == 0 {
// If the channel was closed then the cluster was dropped, we can stop working
return;
}
// The current tablet implementation collects tablet feedback in a channel
// and then clones the whole ClusterData, updates it with new tablets and replaces
// the old ClusterData - this update procedure happens below.
// This fits the general model of how ClusterData is handled in the driver:
// - ClusterData remains a "simple" struct - without locks etc (apart from Node).
// - Topology information update is similar to tablet update - it creates a new ClusterData
// and replaces the old one.
// The disadvantage is that we need to have 2 copies of ClusterData, but this happens
// anyway during topology update.
//
// An alternative solution would be to use some synchronization primitives to update tablet info
// in place. This solution avoids ClusterData cloning but:
// - ClusterData would be much more complicated
// - Requires using locks in hot path (when sending request)
// - Makes maintenance (which happens during topology update) more complicated and error-prone.
//
// I decided to stick with the approach that fits with the driver.
// Apart from the reasons above, it is much easier to reason about concurrency etc
// when reading the code in other parts of the driver.
let mut new_cluster_data: ClusterData = self.cluster_data.load().as_ref().clone();
new_cluster_data.update_tablets(tablets);
self.update_cluster_data(Arc::new(new_cluster_data));
continue;
}
recv_res = self.server_events_channel.recv() => {
if let Some(event) = recv_res {
debug!("Received server event: {:?}", event);
match event {
Event::TopologyChange(_) => (), // Refresh immediately
Event::StatusChange(status) => {
// If some node went down/up, update it's marker and refresh
// later as planned.
match status {
StatusChangeEvent::Down(addr) => self.change_node_down_marker(addr, true),
StatusChangeEvent::Up(addr) => self.change_node_down_marker(addr, false),
}
continue;
},
_ => continue, // Don't go to refreshing
}
} else {
// If server_events_channel was closed, than TopologyReader was dropped,
// so we can probably stop working too
return;
}
}
recv_res = self.use_keyspace_channel.recv() => {
match recv_res {
Some(request) => {
self.used_keyspace = Some(request.keyspace_name.clone());
let cluster_data = self.cluster_data.load_full();
let use_keyspace_future = Self::handle_use_keyspace_request(cluster_data, request);
tokio::spawn(use_keyspace_future);
},
None => return, // If use_keyspace_channel was closed then cluster was dropped, we can stop working
}
continue; // Don't go to refreshing, wait for the next event
}
recv_res = self.control_connection_repair_channel.recv() => {
match recv_res {
Ok(()) => {
// The control connection was broken. Acknowledge that and start attempting to reconnect.
// The first reconnect attempt will be immediate (by attempting metadata refresh below),
// and if it does not succeed, then `control_connection_works` will be set to `false`,
// so subsequent attempts will be issued every second.
}
Err(tokio::sync::broadcast::error::RecvError::Lagged(_)) => {
// This is very unlikely; we would have to have a lot of concurrent
// control connections opened and broken at the same time.
// The best we can do is ignoring this.
}
Err(tokio::sync::broadcast::error::RecvError::Closed) => {
// If control_connection_repair_channel was closed then MetadataReader was dropped,
// we can stop working.
return;
}
}
}
}
// Perform the refresh
debug!("Requesting topology refresh");
last_refresh_time = Instant::now();
let refresh_res = self.perform_refresh().await;
control_connection_works = refresh_res.is_ok();
// Send refresh result if there was a request
if let Some(request) = cur_request {
// We can ignore sending error - if no one waits for the response we can drop it
let _ = request.response_chan.send(refresh_res);
}
}
}
fn change_node_down_marker(&mut self, addr: SocketAddr, is_down: bool) {
let cluster_data = self.cluster_data.load_full();
// We need to iterate through the whole map here, but there will rarely more than ~100 nodes,
// and changes of down marker are infrequent enough to afford this. As an important tradeoff,
// we only keep one hashmap of known_peers, which is indexed by host IDs for node identification.
let node = match cluster_data
.known_peers
.values()
.find(|&peer| peer.address == NodeAddr::Translatable(addr))
{
Some(node) => node,
None => {
warn!("Unknown node address {}", addr);
return;
}
};
node.change_down_marker(is_down);
}
async fn handle_use_keyspace_request(
cluster_data: Arc<ClusterData>,
request: UseKeyspaceRequest,
) {
let result = Self::send_use_keyspace(cluster_data, &request.keyspace_name).await;
// Don't care if nobody wants request result
let _ = request.response_chan.send(result);
}
async fn send_use_keyspace(
cluster_data: Arc<ClusterData>,
keyspace_name: &VerifiedKeyspaceName,
) -> Result<(), QueryError> {
let use_keyspace_futures = cluster_data
.known_peers
.values()
.map(|node| node.use_keyspace(keyspace_name.clone()));
let use_keyspace_results: Vec<Result<(), QueryError>> =
join_all(use_keyspace_futures).await;
use_keyspace_result(use_keyspace_results.into_iter())
}
async fn perform_refresh(&mut self) -> Result<(), QueryError> {
// Read latest Metadata
let metadata = self.metadata_reader.read_metadata(false).await?;
let cluster_data: Arc<ClusterData> = self.cluster_data.load_full();
let new_cluster_data = Arc::new(
ClusterData::new(
metadata,
&self.pool_config,
&cluster_data.known_peers,
&self.used_keyspace,
self.host_filter.as_deref(),
cluster_data.locator.tablets.clone(),
)
.await,
);
new_cluster_data
.wait_until_all_pools_are_initialized()
.await;
self.update_cluster_data(new_cluster_data);
Ok(())
}
fn update_cluster_data(&mut self, new_cluster_data: Arc<ClusterData>) {
self.cluster_data.store(new_cluster_data);
}
}
/// Returns a result of use_keyspace operation, based on the query results
/// returned from given node/connection.
///
/// This function assumes that `use_keyspace_results` iterator is NON-EMPTY!
pub(crate) fn use_keyspace_result(
use_keyspace_results: impl Iterator<Item = Result<(), QueryError>>,
) -> Result<(), QueryError> {
// If there was at least one Ok and the rest were broken connection errors we can return Ok
// keyspace name is correct and will be used on broken connection on the next reconnect
// If there were only broken connection errors then return broken connection error.
// If there was an error different than broken connection error return this error - something is wrong
let mut was_ok: bool = false;
let mut broken_conn_error: Option<QueryError> = None;
for result in use_keyspace_results {
match result {
Ok(()) => was_ok = true,
Err(err) => match err {
QueryError::BrokenConnection(_) | QueryError::ConnectionPoolError(_) => {
broken_conn_error = Some(err)
}
_ => return Err(err),
},
}
}
if was_ok {
return Ok(());
}
// We can unwrap conn_broken_error because use_keyspace_results must be nonempty
Err(broken_conn_error.unwrap())
}