1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
mod precomputed_replicas;
mod replicas;
mod replication_info;
pub(crate) mod tablets;
#[cfg(test)]
pub(crate) mod test;
mod token_ring;
use rand::{seq::IteratorRandom, Rng};
use scylla_cql::frame::response::result::TableSpec;
pub use token_ring::TokenRing;
use self::tablets::TabletsInfo;
use super::{topology::Strategy, Node, NodeRef};
use crate::routing::{Shard, Token};
use itertools::Itertools;
use precomputed_replicas::PrecomputedReplicas;
use replicas::{ReplicasArray, EMPTY_REPLICAS};
use replication_info::ReplicationInfo;
use std::{
cmp,
collections::{HashMap, HashSet},
sync::Arc,
};
use tracing::debug;
/// `ReplicaLocator` provides a way to find the set of owning nodes for a given (token,
/// replication strategy, table) tuple. It does so by either using the precomputed
/// token ranges, or doing the computation on the fly (precomputation is configurable).
#[derive(Debug, Clone)]
pub struct ReplicaLocator {
/// The data based on which `ReplicaLocator` computes replica sets.
replication_data: ReplicationInfo,
precomputed_replicas: PrecomputedReplicas,
datacenters: Vec<String>,
pub(crate) tablets: TabletsInfo,
}
impl ReplicaLocator {
/// Creates a new `ReplicaLocator` in which the specified replication strategies
/// (`precompute_replica_sets_for`) will have its token ranges precomputed. This function can
/// potentially be CPU-intensive (if a ring & replication factors in given strategies are big).
pub(crate) fn new<'a>(
ring_iter: impl Iterator<Item = (Token, Arc<Node>)>,
precompute_replica_sets_for: impl Iterator<Item = &'a Strategy>,
tablets: TabletsInfo,
) -> Self {
let replication_data = ReplicationInfo::new(ring_iter);
let precomputed_replicas =
PrecomputedReplicas::compute(&replication_data, precompute_replica_sets_for);
let datacenters = replication_data
.get_global_ring()
.iter()
.filter_map(|(_, node)| node.datacenter.as_deref())
.unique()
.map(ToOwned::to_owned)
.collect();
Self {
replication_data,
precomputed_replicas,
datacenters,
tablets,
}
}
/// Returns a set of nodes that are considered to be replicas for a given token, strategy and table.
/// If the `datacenter` parameter is set, the returned `ReplicaSet` is limited only to replicas
/// from that datacenter. If a specified datacenter name does not correspond to a valid
/// datacenter, an empty set will be returned.
///
/// Supported replication strategies: `SimpleStrategy`, 'NetworkTopologyStrategy',
/// 'LocalStrategy'. If other is specified, it is treated as the `SimpleStrategy` with
/// replication factor equal to 1.
///
/// If a provided replication strategy did not appear in `precompute_replica_sets_for`
/// parameter of `Self::new`, invocation of this function will trigger a computation of the
/// desired replica set (the computation might be delegated in time and start upon interaction
/// with the returned `ReplicaSet`).
///
/// If the requested table uses Tablets, then a separate code path is taken, which ignores
/// replication strategies and only uses tablet information stored in ReplicaLocator.
/// If we don't have info about the tablet that owns the given token, empty set will be returned.
pub fn replicas_for_token<'a>(
&'a self,
token: Token,
strategy: &'a Strategy,
datacenter: Option<&'a str>,
table_spec: &TableSpec,
) -> ReplicaSet<'a> {
if let Some(tablets) = self.tablets.tablets_for_table(table_spec) {
let replicas: Option<&[(Arc<Node>, Shard)]> = if let Some(datacenter) = datacenter {
tablets.dc_replicas_for_token(token, datacenter)
} else {
tablets.replicas_for_token(token)
};
ReplicaSet {
inner: ReplicaSetInner::PlainSharded(replicas.unwrap_or(
// The table is a tablet table, but we don't have information for given token.
// Let's just return empty set in this case.
&[],
)),
token,
}
} else {
match strategy {
Strategy::SimpleStrategy { replication_factor } => {
if let Some(datacenter) = datacenter {
let replicas =
self.get_simple_strategy_replicas(token, *replication_factor);
return ReplicaSet {
inner: ReplicaSetInner::FilteredSimple {
replicas,
datacenter,
},
token,
};
} else {
return ReplicaSet {
inner: ReplicaSetInner::Plain(
self.get_simple_strategy_replicas(token, *replication_factor),
),
token,
};
}
}
Strategy::NetworkTopologyStrategy {
datacenter_repfactors,
} => {
if let Some(dc) = datacenter {
if let Some(repfactor) = datacenter_repfactors.get(dc) {
return ReplicaSet {
inner: ReplicaSetInner::Plain(
self.get_network_strategy_replicas(token, dc, *repfactor),
),
token,
};
} else {
debug!("Datacenter ({}) does not exist!", dc);
return ReplicaSet {
inner: ReplicaSetInner::Plain(EMPTY_REPLICAS),
token,
};
}
} else {
return ReplicaSet {
inner: ReplicaSetInner::ChainedNTS {
datacenter_repfactors,
locator: self,
token,
},
token,
};
}
}
Strategy::Other { name, .. } => {
debug!("Unknown strategy ({}), falling back to SimpleStrategy with replication_factor = 1", name)
}
_ => (),
}
// Fallback to simple strategy with replication factor = 1.
self.replicas_for_token(
token,
&Strategy::SimpleStrategy {
replication_factor: 1,
},
datacenter,
table_spec,
)
}
}
/// Gives access to the token ring, based on which all token ranges/replica sets are computed.
pub fn ring(&self) -> &TokenRing<Arc<Node>> {
self.replication_data.get_global_ring()
}
/// Gives a list of all nodes in the token ring.
pub fn unique_nodes_in_global_ring(&self) -> &[Arc<Node>] {
self.replication_data.unique_nodes_in_global_ring()
}
/// Gives a list of all known datacenters.
pub fn datacenter_names(&self) -> &[String] {
self.datacenters.as_slice()
}
/// Gives a list of all nodes in a specified datacenter ring (which is created by filtering the
/// original ring to only contain nodes living in the specified datacenter).
pub fn unique_nodes_in_datacenter_ring<'a>(
&'a self,
datacenter_name: &str,
) -> Option<&'a [Arc<Node>]> {
self.replication_data
.unique_nodes_in_datacenter_ring(datacenter_name)
}
fn get_simple_strategy_replicas(
&self,
token: Token,
replication_factor: usize,
) -> ReplicasArray<'_> {
if replication_factor == 0 {
return EMPTY_REPLICAS;
}
if let Some(precomputed_replicas) = self
.precomputed_replicas
.get_precomputed_simple_strategy_replicas(token, replication_factor)
{
precomputed_replicas.into()
} else {
ReplicasArray::from_iter(
self.replication_data
.simple_strategy_replicas(token, replication_factor),
)
}
}
fn get_network_strategy_replicas<'a>(
&'a self,
token: Token,
datacenter: &str,
datacenter_replication_factor: usize,
) -> ReplicasArray<'a> {
if datacenter_replication_factor == 0 {
return EMPTY_REPLICAS;
}
if let Some(precomputed_replicas) = self
.precomputed_replicas
.get_precomputed_network_strategy_replicas(
token,
datacenter,
datacenter_replication_factor,
)
{
ReplicasArray::from(precomputed_replicas)
} else {
ReplicasArray::from_iter(self.replication_data.nts_replicas_in_datacenter(
token,
datacenter,
datacenter_replication_factor,
))
}
}
}
fn with_computed_shard(node: NodeRef, token: Token) -> (NodeRef, Shard) {
let shard = node
.sharder()
.map(|sharder| sharder.shard_of(token))
.unwrap_or(0);
(node, shard)
}
#[derive(Debug)]
enum ReplicaSetInner<'a> {
Plain(ReplicasArray<'a>),
PlainSharded(&'a [(Arc<Node>, Shard)]),
// Represents a set of SimpleStrategy replicas that is limited to a specified datacenter.
FilteredSimple {
replicas: ReplicasArray<'a>,
datacenter: &'a str,
},
// Represents a set of NetworkTopologyStrategy replicas that is not limited to any specific
// datacenter. The set is constructed lazily, by invoking
// `locator.get_network_strategy_replicas()`.
ChainedNTS {
datacenter_repfactors: &'a HashMap<String, usize>,
locator: &'a ReplicaLocator,
token: Token,
},
}
/// Represents a set of replicas for a given token and strategy;
///
/// This container can only be created by calling `ReplicaLocator::replicas_for_token`, and it
/// can borrow precomputed replica lists living in the locator.
#[derive(Debug)]
pub struct ReplicaSet<'a> {
inner: ReplicaSetInner<'a>,
token: Token,
}
impl<'a> ReplicaSet<'a> {
/// Chooses a random replica that satisfies the given predicate.
pub fn choose_filtered<R>(
self,
rng: &mut R,
predicate: impl Fn(&(NodeRef<'a>, Shard)) -> bool,
) -> Option<(NodeRef<'a>, Shard)>
where
R: Rng + ?Sized,
{
let happy = self.choose(rng)?;
if predicate(&happy) {
return Some(happy);
}
self.into_iter().filter(predicate).choose(rng)
}
/// Gets the size of the set.
///
/// If the set represents `SimpleStrategy` replicas that were filtered by datacenter, this
/// function will have O(R) complexity, where R is the replication factor of that strategy.
///
/// If the set represents `NetworkTopologyStrategy` replicas that were not filtered by
/// datacenter, this function will have O(D) complexity where D is the number of known
/// datacenters.
///
/// In all other cases, the complexity is O(1)
pub fn len(&self) -> usize {
match &self.inner {
ReplicaSetInner::Plain(replicas) => replicas.len(),
ReplicaSetInner::PlainSharded(replicas) => replicas.len(),
ReplicaSetInner::FilteredSimple {
replicas,
datacenter,
} => replicas
.iter()
.filter(|node| node.datacenter.as_deref() == Some(*datacenter))
.count(),
ReplicaSetInner::ChainedNTS {
datacenter_repfactors,
locator,
token: _,
} => datacenter_repfactors
.iter()
.map(|(dc, rf)| {
let unique_nodes_in_dc_count = locator
.unique_nodes_in_datacenter_ring(dc)
.map(|nodes| nodes.len())
.unwrap_or(0);
cmp::min(*rf, unique_nodes_in_dc_count)
})
.sum(),
}
}
/// Returns `true` if the replica set contains no elements.
///
/// Complexity same as of `ReplicaSet::len`.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
fn choose<R>(&self, rng: &mut R) -> Option<(NodeRef<'a>, Shard)>
where
R: Rng + ?Sized,
{
let len = self.len();
if len > 0 {
let index = rng.gen_range(0..len);
match &self.inner {
ReplicaSetInner::Plain(replicas) => replicas
.get(index)
.map(|node| with_computed_shard(node, self.token)),
ReplicaSetInner::PlainSharded(replicas) => {
replicas.get(index).map(|(node, shard)| (node, *shard))
}
ReplicaSetInner::FilteredSimple {
replicas,
datacenter,
} => replicas
.iter()
.filter(|node| node.datacenter.as_deref() == Some(*datacenter))
.nth(index)
.map(|node| with_computed_shard(node, self.token)),
ReplicaSetInner::ChainedNTS {
datacenter_repfactors,
locator,
token,
} => {
let mut nodes_to_skip = index;
for datacenter in locator.datacenters.iter() {
let requested_repfactor =
*datacenter_repfactors.get(datacenter).unwrap_or(&0);
let unique_nodes_in_dc_count = locator
.unique_nodes_in_datacenter_ring(datacenter)
.map(|nodes| nodes.len())
.unwrap_or(0);
let repfactor = cmp::min(requested_repfactor, unique_nodes_in_dc_count);
if nodes_to_skip < repfactor {
return locator
.get_network_strategy_replicas(*token, datacenter, repfactor)
.get(nodes_to_skip)
.map(|node| with_computed_shard(node, self.token));
}
nodes_to_skip -= repfactor;
}
None
}
}
} else {
None
}
}
}
impl<'a> IntoIterator for ReplicaSet<'a> {
type Item = (NodeRef<'a>, Shard);
type IntoIter = ReplicaSetIterator<'a>;
/// Converts the replica set into iterator. Order defined by that iterator does not have to
/// match the order set by the token ring.
///
/// Iterating through `ReplicaSet` using this method is far more efficient than invoking the
/// `get` method sequentially.
fn into_iter(self) -> Self::IntoIter {
let inner = match self.inner {
ReplicaSetInner::Plain(replicas) => ReplicaSetIteratorInner::Plain { replicas, idx: 0 },
ReplicaSetInner::PlainSharded(replicas) => {
ReplicaSetIteratorInner::PlainSharded { replicas, idx: 0 }
}
ReplicaSetInner::FilteredSimple {
replicas,
datacenter,
} => ReplicaSetIteratorInner::FilteredSimple {
replicas,
datacenter,
idx: 0,
},
ReplicaSetInner::ChainedNTS {
datacenter_repfactors,
locator,
token,
} => {
if let Some(datacenter) = locator.datacenters.first() {
let repfactor = *datacenter_repfactors.get(datacenter.as_str()).unwrap_or(&0);
ReplicaSetIteratorInner::ChainedNTS {
replicas: locator
.get_network_strategy_replicas(token, datacenter, repfactor),
replicas_idx: 0,
locator,
token,
datacenter_idx: 0,
datacenter_repfactors,
}
} else {
ReplicaSetIteratorInner::Plain {
replicas: EMPTY_REPLICAS,
idx: 0,
}
}
}
};
ReplicaSetIterator {
inner,
token: self.token,
}
}
}
enum ReplicaSetIteratorInner<'a> {
/// Token ring with SimpleStrategy, any datacenter
Plain {
replicas: ReplicasArray<'a>,
idx: usize,
},
/// Tablets
PlainSharded {
replicas: &'a [(Arc<Node>, Shard)],
idx: usize,
},
/// Token ring with SimpleStrategy, specific datacenter
FilteredSimple {
replicas: ReplicasArray<'a>,
datacenter: &'a str,
idx: usize,
},
/// Token ring with NetworkTopologyStrategy
ChainedNTS {
replicas: ReplicasArray<'a>,
replicas_idx: usize,
datacenter_repfactors: &'a HashMap<String, usize>,
locator: &'a ReplicaLocator,
token: Token,
datacenter_idx: usize,
},
}
/// Iterator that returns replicas from some replica set.
pub struct ReplicaSetIterator<'a> {
inner: ReplicaSetIteratorInner<'a>,
token: Token,
}
impl<'a> Iterator for ReplicaSetIterator<'a> {
type Item = (NodeRef<'a>, Shard);
fn next(&mut self) -> Option<Self::Item> {
match &mut self.inner {
ReplicaSetIteratorInner::Plain { replicas, idx } => {
if let Some(replica) = replicas.get(*idx) {
*idx += 1;
return Some(with_computed_shard(replica, self.token));
}
None
}
ReplicaSetIteratorInner::PlainSharded { replicas, idx } => {
if let Some((replica, shard)) = replicas.get(*idx) {
*idx += 1;
return Some((replica, *shard));
}
None
}
ReplicaSetIteratorInner::FilteredSimple {
replicas,
datacenter,
idx,
} => {
while let Some(replica) = replicas.get(*idx) {
*idx += 1;
if replica.datacenter.as_deref() == Some(*datacenter) {
return Some(with_computed_shard(replica, self.token));
}
}
None
}
ReplicaSetIteratorInner::ChainedNTS {
replicas,
replicas_idx,
locator,
token,
datacenter_idx,
datacenter_repfactors,
} => {
if let Some(replica) = replicas.get(*replicas_idx) {
*replicas_idx += 1;
Some(with_computed_shard(replica, self.token))
} else if *datacenter_idx + 1 < locator.datacenters.len() {
*datacenter_idx += 1;
*replicas_idx = 0;
let datacenter = &locator.datacenters[*datacenter_idx];
let repfactor = *datacenter_repfactors.get(datacenter).unwrap_or(&0);
*replicas =
locator.get_network_strategy_replicas(*token, datacenter, repfactor);
self.next()
} else {
None
}
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
match &self.inner {
ReplicaSetIteratorInner::Plain { replicas, idx } => {
let size = replicas.len() - *idx;
(size, Some(size))
}
ReplicaSetIteratorInner::PlainSharded { replicas, idx } => {
let size = replicas.len() - *idx;
(size, Some(size))
}
ReplicaSetIteratorInner::FilteredSimple {
replicas,
datacenter: _,
idx,
} => (0, Some(replicas.len() - *idx)),
ReplicaSetIteratorInner::ChainedNTS {
replicas: _,
replicas_idx: _,
datacenter_repfactors,
locator,
token: _,
datacenter_idx,
} => {
let yielded: usize = locator.datacenter_names()[0..*datacenter_idx]
.iter()
.filter_map(|name| datacenter_repfactors.get(name))
.sum();
(
0,
Some(datacenter_repfactors.values().sum::<usize>() - yielded),
)
}
}
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
match &mut self.inner {
ReplicaSetIteratorInner::Plain { replicas: _, idx }
| ReplicaSetIteratorInner::PlainSharded { replicas: _, idx } => {
*idx += n;
self.next()
}
_ => {
for _i in 0..n {
self.next()?;
}
self.next()
}
}
}
}
impl<'a> ReplicaSet<'a> {
pub fn into_replicas_ordered(self) -> ReplicasOrdered<'a> {
ReplicasOrdered { replica_set: self }
}
}
/// Represents a sequence of replicas for a given token and strategy,
/// ordered according to the ring order (for token-ring tables) or with the
/// order defined by tablet data (for tablet tables).
///
/// This container can only be created by calling `ReplicaSet::into_replicas_ordered()`,
/// and either it can borrow precomputed replica lists living in the locator (in case of SimpleStrategy)
/// or it must compute them on-demand (in case of NetworkTopologyStrategy).
/// The computation is lazy (performed by `ReplicasOrderedIterator` upon call to `next()`).
/// For obtaining the primary replica, no allocations are needed. Therefore, the first call
/// to `next()` is optimised and does not allocate.
/// For the remaining others, unfortunately, allocation is inevitable.
pub struct ReplicasOrdered<'a> {
replica_set: ReplicaSet<'a>,
}
/// Iterator that returns replicas from some replica sequence, ordered according to the ring order.
pub struct ReplicasOrderedIterator<'a> {
inner: ReplicasOrderedIteratorInner<'a>,
}
enum ReplicasOrderedIteratorInner<'a> {
AlreadyRingOrdered {
// In case of Plain, PlainSharded and FilteredSimple variants,
// ReplicaSetIterator respects ring order.
replica_set_iter: ReplicaSetIterator<'a>,
},
PolyDatacenterNTS {
// In case of ChainedNTS variant, ReplicaSetIterator does not respect ring order,
// so specific code is needed to yield replicas according to that order.
replicas_ordered_iter: ReplicasOrderedNTSIterator<'a>,
},
}
struct ReplicasOrderedNTSIterator<'a> {
token: Token,
inner: ReplicasOrderedNTSIteratorInner<'a>,
}
enum ReplicasOrderedNTSIteratorInner<'a> {
FreshForPick {
datacenter_repfactors: &'a HashMap<String, usize>,
locator: &'a ReplicaLocator,
token: Token,
},
Picked {
datacenter_repfactors: &'a HashMap<String, usize>,
locator: &'a ReplicaLocator,
token: Token,
picked: NodeRef<'a>,
},
ComputedFallback {
replicas: ReplicasArray<'a>,
idx: usize,
},
}
impl<'a> Iterator for ReplicasOrderedNTSIterator<'a> {
type Item = (NodeRef<'a>, Shard);
fn next(&mut self) -> Option<Self::Item> {
match self.inner {
ReplicasOrderedNTSIteratorInner::FreshForPick {
datacenter_repfactors,
locator,
token,
} => {
// We're going to find the primary replica for the given token.
let nodes_on_ring = locator.replication_data.get_global_ring().ring_range(token);
for node in nodes_on_ring {
// If this node's DC has some replicas in this NTS...
if let Some(dc) = &node.datacenter {
if datacenter_repfactors.get(dc).is_some() {
// ...then this node must be the primary replica.
self.inner = ReplicasOrderedNTSIteratorInner::Picked {
datacenter_repfactors,
locator,
token,
picked: node,
};
return Some(with_computed_shard(node, self.token));
}
}
}
None
}
ReplicasOrderedNTSIteratorInner::Picked {
datacenter_repfactors,
locator,
token,
picked,
} => {
// Clippy can't check that in Eq and Hash impls we don't actually use any field with interior mutability
// (in Node only `down_marker` is such, being an AtomicBool).
// https://rust-lang.github.io/rust-clippy/master/index.html#mutable_key_type
#[allow(clippy::mutable_key_type)]
let mut all_replicas: HashSet<&'a Arc<Node>> = HashSet::new();
for (datacenter, repfactor) in datacenter_repfactors.iter() {
all_replicas.extend(
locator
.get_network_strategy_replicas(token, datacenter, *repfactor)
.iter(),
);
}
// It's no use returning a node that was already picked.
all_replicas.remove(picked);
let mut replicas_ordered = vec![];
let nodes_on_ring = locator.replication_data.get_global_ring().ring_range(token);
for node in nodes_on_ring {
if all_replicas.is_empty() {
// All replicas were put in order.
break;
}
if all_replicas.remove(node) {
replicas_ordered.push(node);
}
}
assert!(
all_replicas.is_empty(),
"all_replicas somehow contained a node that wasn't present in the global ring!"
);
self.inner = ReplicasOrderedNTSIteratorInner::ComputedFallback {
replicas: ReplicasArray::Owned(replicas_ordered),
idx: 0,
};
self.next()
}
ReplicasOrderedNTSIteratorInner::ComputedFallback {
ref replicas,
ref mut idx,
} => {
if let Some(replica) = replicas.get(*idx) {
*idx += 1;
Some(with_computed_shard(replica, self.token))
} else {
None
}
}
}
}
}
impl<'a> Iterator for ReplicasOrderedIterator<'a> {
type Item = (NodeRef<'a>, Shard);
fn next(&mut self) -> Option<Self::Item> {
match &mut self.inner {
ReplicasOrderedIteratorInner::AlreadyRingOrdered { replica_set_iter } => {
replica_set_iter.next()
}
ReplicasOrderedIteratorInner::PolyDatacenterNTS {
replicas_ordered_iter,
} => replicas_ordered_iter.next(),
}
}
}
impl<'a> IntoIterator for ReplicasOrdered<'a> {
type Item = (NodeRef<'a>, Shard);
type IntoIter = ReplicasOrderedIterator<'a>;
fn into_iter(self) -> Self::IntoIter {
let Self { replica_set } = self;
Self::IntoIter {
inner: match replica_set.inner {
ReplicaSetInner::Plain(_) | ReplicaSetInner::FilteredSimple { .. } => {
ReplicasOrderedIteratorInner::AlreadyRingOrdered {
replica_set_iter: replica_set.into_iter(),
}
}
ReplicaSetInner::PlainSharded(_) => {
ReplicasOrderedIteratorInner::AlreadyRingOrdered {
replica_set_iter: replica_set.into_iter(),
}
}
ReplicaSetInner::ChainedNTS {
datacenter_repfactors,
locator,
token,
} => ReplicasOrderedIteratorInner::PolyDatacenterNTS {
replicas_ordered_iter: ReplicasOrderedNTSIterator {
token: replica_set.token,
inner: ReplicasOrderedNTSIteratorInner::FreshForPick {
datacenter_repfactors,
locator,
token,
},
},
},
},
}
}
}
#[cfg(test)]
mod tests {
use crate::{routing::Token, test_utils::setup_tracing, transport::locator::test::*};
#[tokio::test]
async fn test_replicas_ordered() {
setup_tracing();
let metadata = mock_metadata_for_token_aware_tests();
let locator = create_locator(&metadata);
// For each case (token, limit_to_dc, strategy), we are checking
// that ReplicasOrdered yields replicas in the expected order.
let check = |token, limit_to_dc, strategy, table, expected| {
let replica_set =
locator.replicas_for_token(Token::new(token), strategy, limit_to_dc, table);
let replicas_ordered = replica_set.into_replicas_ordered();
let ids: Vec<_> = replicas_ordered
.into_iter()
.map(|(node, _shard)| node.address.port())
.collect();
assert_eq!(expected, ids);
};
// In all these tests:
// going through the ring, we get order: F , A , C , D , G , B , E
// us eu eu us eu eu us
// r2 r1 r1 r1 r2 r1 r1
check(
160,
None,
&metadata.keyspaces.get(KEYSPACE_NTS_RF_3).unwrap().strategy,
TABLE_NTS_RF_3,
vec![F, A, C, D, G, E],
);
check(
160,
None,
&metadata.keyspaces.get(KEYSPACE_NTS_RF_2).unwrap().strategy,
TABLE_NTS_RF_2,
vec![F, A, D, G],
);
check(
160,
None,
&metadata.keyspaces.get(KEYSPACE_SS_RF_2).unwrap().strategy,
TABLE_SS_RF_2,
vec![F, A],
);
check(
160,
Some("eu"),
&metadata.keyspaces.get(KEYSPACE_NTS_RF_3).unwrap().strategy,
TABLE_NTS_RF_3,
vec![A, C, G],
);
check(
160,
Some("us"),
&metadata.keyspaces.get(KEYSPACE_NTS_RF_3).unwrap().strategy,
TABLE_NTS_RF_3,
vec![F, D, E],
);
check(
160,
Some("eu"),
&metadata.keyspaces.get(KEYSPACE_SS_RF_2).unwrap().strategy,
TABLE_SS_RF_2,
vec![A],
);
}
}