1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
use crate::routing::Token;
/// A token ring is a continuous hash ring. It defines association by hashing a key
/// onto the ring and then walking the ring in one direction.
/// Cassandra and Scylla use it for determining data ownership which allows for efficient load balancing.
/// The token ring is used by the driver to find the replicas for a given token.
/// Each ring member has a token (i64 number) which defines the member's position on the ring.
/// The ring is circular and can be traversed in the order of increasing tokens.
/// `TokenRing` makes it easy and efficient to traverse the ring starting at a given token.
#[derive(Debug, Clone)]
pub struct TokenRing<ElemT> {
ring: Vec<(Token, ElemT)>,
}
impl<ElemT> TokenRing<ElemT> {
pub(crate) const fn new_empty() -> TokenRing<ElemT> {
Self { ring: Vec::new() }
}
pub(crate) fn new(ring_iter: impl Iterator<Item = (Token, ElemT)>) -> TokenRing<ElemT> {
let mut ring: Vec<(Token, ElemT)> = ring_iter.collect();
ring.sort_by(|a, b| a.0.cmp(&b.0));
TokenRing { ring }
}
/// Iterates over all members of the ring starting at the lowest token.
pub fn iter(&self) -> impl Iterator<Item = &(Token, ElemT)> {
self.ring.iter()
}
/// Provides an iterator over the ring members starting at the given token.
/// The iterator traverses the whole ring in the direction of increasing tokens.
/// After reaching the maximum token it wraps around and continues from the lowest one.
/// The iterator visits each member once, it doesn't have infinite length.
pub fn ring_range_full(&self, token: Token) -> impl Iterator<Item = &(Token, ElemT)> {
let binary_search_index: usize = match self.ring.binary_search_by(|e| e.0.cmp(&token)) {
Ok(exact_match_index) => exact_match_index,
Err(first_greater_index) => first_greater_index,
};
self.ring[binary_search_index..]
.iter()
.chain(self.ring.iter())
.take(self.ring.len())
}
/// Provides an iterator over the ring's elements starting at the given token.
/// The iterator traverses the whole ring in the direction of increasing tokens.
/// After reaching the maximum token it wraps around and continues from the lowest one.
/// The iterator visits each member once, it doesn't have an infinite length.
/// To access the token along with the element you can use `ring_range_full`.
pub fn ring_range(&self, token: Token) -> impl Iterator<Item = &ElemT> {
self.ring_range_full(token).map(|(_t, e)| e)
}
/// Traverses the ring starting at the given token and returns the first ring member encountered.
pub fn get_elem_for_token(&self, token: Token) -> Option<&ElemT> {
self.ring_range(token).next()
}
/// Get the total number of members in the ring.
pub fn len(&self) -> usize {
self.ring.len()
}
/// Returns `true` if the token ring contains no elements.
pub fn is_empty(&self) -> bool {
self.ring.is_empty()
}
}
#[cfg(test)]
mod tests {
use super::TokenRing;
use crate::{routing::Token, test_utils::setup_tracing};
#[test]
fn test_token_ring() {
setup_tracing();
let ring_data = [
(Token::new(-30), -3),
(Token::new(-20), -2),
(Token::new(-10), -1),
(Token::new(0), 0),
(Token::new(10), 1),
(Token::new(20), 2),
(Token::new(30), 3),
];
let ring: TokenRing<i32> = TokenRing::new(ring_data.into_iter());
assert_eq!(
ring.ring_range(Token::new(-35))
.cloned()
.collect::<Vec<i32>>(),
vec![-3, -2, -1, 0, 1, 2, 3]
);
assert_eq!(
ring.ring_range(Token::new(-30))
.cloned()
.collect::<Vec<i32>>(),
vec![-3, -2, -1, 0, 1, 2, 3]
);
assert_eq!(
ring.ring_range(Token::new(-25))
.cloned()
.collect::<Vec<i32>>(),
vec![-2, -1, 0, 1, 2, 3, -3]
);
assert_eq!(
ring.ring_range(Token::new(-20))
.cloned()
.collect::<Vec<i32>>(),
vec![-2, -1, 0, 1, 2, 3, -3]
);
assert_eq!(
ring.ring_range(Token::new(-15))
.cloned()
.collect::<Vec<i32>>(),
vec![-1, 0, 1, 2, 3, -3, -2]
);
assert_eq!(
ring.ring_range(Token::new(-10))
.cloned()
.collect::<Vec<i32>>(),
vec![-1, 0, 1, 2, 3, -3, -2]
);
assert_eq!(
ring.ring_range(Token::new(-5))
.cloned()
.collect::<Vec<i32>>(),
vec![0, 1, 2, 3, -3, -2, -1]
);
assert_eq!(
ring.ring_range(Token::new(0))
.cloned()
.collect::<Vec<i32>>(),
vec![0, 1, 2, 3, -3, -2, -1]
);
assert_eq!(
ring.ring_range(Token::new(5))
.cloned()
.collect::<Vec<i32>>(),
vec![1, 2, 3, -3, -2, -1, 0]
);
assert_eq!(
ring.ring_range(Token::new(10))
.cloned()
.collect::<Vec<i32>>(),
vec![1, 2, 3, -3, -2, -1, 0]
);
assert_eq!(
ring.ring_range(Token::new(15))
.cloned()
.collect::<Vec<i32>>(),
vec![2, 3, -3, -2, -1, 0, 1]
);
assert_eq!(
ring.ring_range(Token::new(20))
.cloned()
.collect::<Vec<i32>>(),
vec![2, 3, -3, -2, -1, 0, 1]
);
assert_eq!(
ring.ring_range(Token::new(25))
.cloned()
.collect::<Vec<i32>>(),
vec![3, -3, -2, -1, 0, 1, 2]
);
assert_eq!(
ring.ring_range(Token::new(30))
.cloned()
.collect::<Vec<i32>>(),
vec![3, -3, -2, -1, 0, 1, 2]
);
assert_eq!(
ring.ring_range(Token::new(35))
.cloned()
.collect::<Vec<i32>>(),
vec![-3, -2, -1, 0, 1, 2, 3]
);
}
}