1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
use crate::routing::Token;

/// A token ring is a continuous hash ring. It defines association by hashing a key
/// onto the ring and then walking the ring in one direction.
/// Cassandra and Scylla use it for determining data ownership which allows for efficient load balancing.
/// The token ring is used by the driver to find the replicas for a given token.
/// Each ring member has a token (i64 number) which defines the member's position on the ring.
/// The ring is circular and can be traversed in the order of increasing tokens.
/// `TokenRing` makes it easy and efficient to traverse the ring starting at a given token.
#[derive(Debug, Clone)]
pub struct TokenRing<ElemT> {
    ring: Vec<(Token, ElemT)>,
}

impl<ElemT> TokenRing<ElemT> {
    pub(crate) const fn new_empty() -> TokenRing<ElemT> {
        Self { ring: Vec::new() }
    }

    pub(crate) fn new(ring_iter: impl Iterator<Item = (Token, ElemT)>) -> TokenRing<ElemT> {
        let mut ring: Vec<(Token, ElemT)> = ring_iter.collect();
        ring.sort_by(|a, b| a.0.cmp(&b.0));
        TokenRing { ring }
    }

    /// Iterates over all members of the ring starting at the lowest token.
    pub fn iter(&self) -> impl Iterator<Item = &(Token, ElemT)> {
        self.ring.iter()
    }

    /// Provides an iterator over the ring members starting at the given token.
    /// The iterator traverses the whole ring in the direction of increasing tokens.
    /// After reaching the maximum token it wraps around and continues from the lowest one.
    /// The iterator visits each member once, it doesn't have infinite length.
    pub fn ring_range_full(&self, token: Token) -> impl Iterator<Item = &(Token, ElemT)> {
        let binary_search_index: usize = match self.ring.binary_search_by(|e| e.0.cmp(&token)) {
            Ok(exact_match_index) => exact_match_index,
            Err(first_greater_index) => first_greater_index,
        };

        self.ring[binary_search_index..]
            .iter()
            .chain(self.ring.iter())
            .take(self.ring.len())
    }

    /// Provides an iterator over the ring's elements starting at the given token.
    /// The iterator traverses the whole ring in the direction of increasing tokens.
    /// After reaching the maximum token it wraps around and continues from the lowest one.
    /// The iterator visits each member once, it doesn't have an infinite length.
    /// To access the token along with the element you can use `ring_range_full`.
    pub fn ring_range(&self, token: Token) -> impl Iterator<Item = &ElemT> {
        self.ring_range_full(token).map(|(_t, e)| e)
    }

    /// Traverses the ring starting at the given token and returns the first ring member encountered.
    pub fn get_elem_for_token(&self, token: Token) -> Option<&ElemT> {
        self.ring_range(token).next()
    }

    /// Get the total number of members in the ring.
    pub fn len(&self) -> usize {
        self.ring.len()
    }

    /// Returns `true` if the token ring contains no elements.
    pub fn is_empty(&self) -> bool {
        self.ring.is_empty()
    }
}

#[cfg(test)]
mod tests {
    use super::TokenRing;
    use crate::{routing::Token, test_utils::setup_tracing};

    #[test]
    fn test_token_ring() {
        setup_tracing();
        let ring_data = [
            (Token::new(-30), -3),
            (Token::new(-20), -2),
            (Token::new(-10), -1),
            (Token::new(0), 0),
            (Token::new(10), 1),
            (Token::new(20), 2),
            (Token::new(30), 3),
        ];

        let ring: TokenRing<i32> = TokenRing::new(ring_data.into_iter());

        assert_eq!(
            ring.ring_range(Token::new(-35))
                .cloned()
                .collect::<Vec<i32>>(),
            vec![-3, -2, -1, 0, 1, 2, 3]
        );

        assert_eq!(
            ring.ring_range(Token::new(-30))
                .cloned()
                .collect::<Vec<i32>>(),
            vec![-3, -2, -1, 0, 1, 2, 3]
        );

        assert_eq!(
            ring.ring_range(Token::new(-25))
                .cloned()
                .collect::<Vec<i32>>(),
            vec![-2, -1, 0, 1, 2, 3, -3]
        );

        assert_eq!(
            ring.ring_range(Token::new(-20))
                .cloned()
                .collect::<Vec<i32>>(),
            vec![-2, -1, 0, 1, 2, 3, -3]
        );

        assert_eq!(
            ring.ring_range(Token::new(-15))
                .cloned()
                .collect::<Vec<i32>>(),
            vec![-1, 0, 1, 2, 3, -3, -2]
        );

        assert_eq!(
            ring.ring_range(Token::new(-10))
                .cloned()
                .collect::<Vec<i32>>(),
            vec![-1, 0, 1, 2, 3, -3, -2]
        );

        assert_eq!(
            ring.ring_range(Token::new(-5))
                .cloned()
                .collect::<Vec<i32>>(),
            vec![0, 1, 2, 3, -3, -2, -1]
        );

        assert_eq!(
            ring.ring_range(Token::new(0))
                .cloned()
                .collect::<Vec<i32>>(),
            vec![0, 1, 2, 3, -3, -2, -1]
        );

        assert_eq!(
            ring.ring_range(Token::new(5))
                .cloned()
                .collect::<Vec<i32>>(),
            vec![1, 2, 3, -3, -2, -1, 0]
        );

        assert_eq!(
            ring.ring_range(Token::new(10))
                .cloned()
                .collect::<Vec<i32>>(),
            vec![1, 2, 3, -3, -2, -1, 0]
        );

        assert_eq!(
            ring.ring_range(Token::new(15))
                .cloned()
                .collect::<Vec<i32>>(),
            vec![2, 3, -3, -2, -1, 0, 1]
        );

        assert_eq!(
            ring.ring_range(Token::new(20))
                .cloned()
                .collect::<Vec<i32>>(),
            vec![2, 3, -3, -2, -1, 0, 1]
        );

        assert_eq!(
            ring.ring_range(Token::new(25))
                .cloned()
                .collect::<Vec<i32>>(),
            vec![3, -3, -2, -1, 0, 1, 2]
        );

        assert_eq!(
            ring.ring_range(Token::new(30))
                .cloned()
                .collect::<Vec<i32>>(),
            vec![3, -3, -2, -1, 0, 1, 2]
        );

        assert_eq!(
            ring.ring_range(Token::new(35))
                .cloned()
                .collect::<Vec<i32>>(),
            vec![-3, -2, -1, 0, 1, 2, 3]
        );
    }
}