1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
//! Framework for deserialization of data returned by database queries.
//!
//! Deserialization is based on two traits:
//!
//! - A type that implements `DeserializeValue<'frame, 'metadata>` can be deserialized
//! from a single _CQL value_ - i.e. an element of a row in the query result,
//! - A type that implements `DeserializeRow<'frame, 'metadata>` can be deserialized
//! from a single _row_ of a query result.
//!
//! Those traits are quite similar to each other, both in the idea behind them
//! and the interface that they expose.
//!
//! It's important to understand what is a _deserialized type_. It's not just
//! an implementor of Deserialize{Value, Row}; there are some implementors of
//! `Deserialize{Value, Row}` who are not yet final types, but **partially**
//! deserialized types that support further deserialization - _type
//! deserializers_, such as `ListlikeIterator`, `UdtIterator` or `ColumnIterator`.
//!
//! # Lifetime parameters
//!
//! - `'frame` is the lifetime of the frame. Any deserialized type that is going to borrow
//! from the frame must have its lifetime bound by `'frame`.
//! - `'metadata` is the lifetime of the result metadata. As result metadata is only needed
//! for the very deserialization process and the **final** deserialized types (i.e. those
//! that are not going to deserialize anything else, opposite of e.g. `MapIterator`) can
//! later live independently of the metadata, this is different from `'frame`.
//!
//! _Type deserializers_, as they still need to deserialize some type, are naturally bound
//! by 'metadata lifetime. However, final types are completely deserialized, so they should
//! not be bound by 'metadata - only by 'frame.
//!
//! Rationale:
//! `DeserializeValue` requires two types of data in order to perform
//! deserialization:
//! 1) a reference to the CQL frame (a FrameSlice),
//! 2) the type of the column being deserialized, being part of the
//! ResultMetadata.
//!
//! Similarly, `DeserializeRow` requires two types of data in order to
//! perform deserialization:
//! 1) a reference to the CQL frame (a FrameSlice),
//! 2) a slice of specifications of all columns in the row, being part of
//! the ResultMetadata.
//!
//! When deserializing owned types, both the frame and the metadata can have
//! any lifetime and it's not important. When deserializing borrowed types,
//! however, they borrow from the frame, so their lifetime must necessarily
//! be bound by the lifetime of the frame. Metadata is only needed for the
//! deserialization, so its lifetime does not abstractly bound the
//! deserialized value. Not to unnecessarily shorten the deserialized
//! values' lifetime to the metadata's lifetime (due to unification of
//! metadata's and frame's lifetime in value deserializers), a separate
//! lifetime parameter is introduced for result metadata: `'metadata`.
//!
//! # `type_check` and `deserialize`
//!
//! The deserialization process is divided into two parts: type checking and
//! actual deserialization, represented by `DeserializeValue`/`DeserializeRow`'s
//! methods called `type_check` and `deserialize`.
//!
//! The `deserialize` method can assume that `type_check` was called before, so
//! it doesn't have to verify the type again. This can be a performance gain
//! when deserializing query results with multiple rows: as each row in a result
//! has the same type, it is only necessary to call `type_check` once for the
//! whole result and then `deserialize` for each row.
//!
//! Note that `deserialize` is not an `unsafe` method - although you can be
//! sure that the driver will call `type_check` before `deserialize`, you
//! shouldn't do unsafe things based on this assumption.
//!
//! # Data ownership
//!
//! Some CQL types can be easily consumed while still partially serialized.
//! For example, types like `blob` or `text` can be just represented with
//! `&[u8]` and `&str` that just point to a part of the serialized response.
//! This is more efficient than using `Vec<u8>` or `String` because it avoids
//! an allocation and a copy, however it is less convenient because those types
//! are bound with a lifetime.
//!
//! The framework supports types that refer to the serialized response's memory
//! in three different ways:
//!
//! ## Owned types
//!
//! Some types don't borrow anything and fully own their data, e.g. `i32` or
//! `String`. They aren't constrained by any lifetime and should implement
//! the respective trait for _all_ lifetimes, i.e.:
//!
//! ```rust
//! # use scylla_cql::frame::response::result::ColumnType;
//! # use scylla_cql::types::deserialize::{DeserializationError, FrameSlice, TypeCheckError};
//! # use scylla_cql::types::deserialize::value::DeserializeValue;
//! use thiserror::Error;
//! struct MyVec(Vec<u8>);
//! #[derive(Debug, Error)]
//! enum MyDeserError {
//! #[error("Expected bytes")]
//! ExpectedBytes,
//! #[error("Expected non-null")]
//! ExpectedNonNull,
//! }
//! impl<'frame, 'metadata> DeserializeValue<'frame, 'metadata> for MyVec {
//! fn type_check(typ: &ColumnType) -> Result<(), TypeCheckError> {
//! if let ColumnType::Blob = typ {
//! return Ok(());
//! }
//! Err(TypeCheckError::new(MyDeserError::ExpectedBytes))
//! }
//!
//! fn deserialize(
//! _typ: &'metadata ColumnType<'metadata>,
//! v: Option<FrameSlice<'frame>>,
//! ) -> Result<Self, DeserializationError> {
//! v.ok_or_else(|| DeserializationError::new(MyDeserError::ExpectedNonNull))
//! .map(|v| Self(v.as_slice().to_vec()))
//! }
//! }
//! ```
//!
//! ## Borrowing types
//!
//! Some types do not fully contain their data but rather will point to some
//! bytes in the serialized response, e.g. `&str` or `&[u8]`. Those types will
//! usually contain a lifetime in their definition. In order to properly
//! implement `DeserializeValue` or `DeserializeRow` for such a type, the `impl`
//! should still have a generic lifetime parameter, but the lifetimes from the
//! type definition should be constrained with the generic lifetime parameter.
//! For example:
//!
//! ```rust
//! # use scylla_cql::frame::response::result::ColumnType;
//! # use scylla_cql::types::deserialize::{DeserializationError, FrameSlice, TypeCheckError};
//! # use scylla_cql::types::deserialize::value::DeserializeValue;
//! use thiserror::Error;
//! struct MySlice<'a>(&'a [u8]);
//! #[derive(Debug, Error)]
//! enum MyDeserError {
//! #[error("Expected bytes")]
//! ExpectedBytes,
//! #[error("Expected non-null")]
//! ExpectedNonNull,
//! }
//! impl<'a, 'frame, 'metadata> DeserializeValue<'frame, 'metadata> for MySlice<'a>
//! where
//! 'frame: 'a,
//! {
//! fn type_check(typ: &ColumnType) -> Result<(), TypeCheckError> {
//! if let ColumnType::Blob = typ {
//! return Ok(());
//! }
//! Err(TypeCheckError::new(MyDeserError::ExpectedBytes))
//! }
//!
//! fn deserialize(
//! _typ: &'metadata ColumnType<'metadata>,
//! v: Option<FrameSlice<'frame>>,
//! ) -> Result<Self, DeserializationError> {
//! v.ok_or_else(|| DeserializationError::new(MyDeserError::ExpectedNonNull))
//! .map(|v| Self(v.as_slice()))
//! }
//! }
//! ```
//!
//! ## Reference-counted types
//!
//! Internally, the driver uses the `bytes::Bytes` type to keep the contents
//! of the serialized response. It supports creating derived `Bytes` objects
//! which point to a subslice but keep the whole, original `Bytes` object alive.
//!
//! During deserialization, a type can obtain a `Bytes` subslice that points
//! to the serialized value. This approach combines advantages of the previous
//! two approaches - creating a derived `Bytes` object can be cheaper than
//! allocation and a copy (it supports `Arc`-like semantics) and the `Bytes`
//! type is not constrained by a lifetime. However, you should be aware that
//! the subslice will keep the whole `Bytes` object that holds the frame alive.
//! It is not recommended to use this approach for long-living objects because
//! it can introduce space leaks.
//!
//! Example:
//!
//! ```rust
//! # use scylla_cql::frame::response::result::ColumnType;
//! # use scylla_cql::types::deserialize::{DeserializationError, FrameSlice, TypeCheckError};
//! # use scylla_cql::types::deserialize::value::DeserializeValue;
//! # use bytes::Bytes;
//! use thiserror::Error;
//! struct MyBytes(Bytes);
//! #[derive(Debug, Error)]
//! enum MyDeserError {
//! #[error("Expected bytes")]
//! ExpectedBytes,
//! #[error("Expected non-null")]
//! ExpectedNonNull,
//! }
//! impl<'frame, 'metadata> DeserializeValue<'frame, 'metadata> for MyBytes {
//! fn type_check(typ: &ColumnType) -> Result<(), TypeCheckError> {
//! if let ColumnType::Blob = typ {
//! return Ok(());
//! }
//! Err(TypeCheckError::new(MyDeserError::ExpectedBytes))
//! }
//!
//! fn deserialize(
//! _typ: &'metadata ColumnType<'metadata>,
//! v: Option<FrameSlice<'frame>>,
//! ) -> Result<Self, DeserializationError> {
//! v.ok_or_else(|| DeserializationError::new(MyDeserError::ExpectedNonNull))
//! .map(|v| Self(v.to_bytes()))
//! }
//! }
//! ```
pub mod frame_slice;
pub mod result;
pub mod row;
pub mod value;
pub use frame_slice::FrameSlice;
pub use row::DeserializeRow;
pub use value::DeserializeValue;
use std::error::Error;
use std::sync::Arc;
use thiserror::Error;
// Errors
/// An error indicating that a failure happened during type check.
///
/// The error is type-erased so that the crate users can define their own
/// type check impls and their errors.
/// As for the impls defined or generated
/// by the driver itself, the following errors can be returned:
///
/// - [`row::BuiltinTypeCheckError`] is returned when type check of
/// one of types with an impl built into the driver fails. It is also returned
/// from impls generated by the `DeserializeRow` macro.
/// - [`value::BuiltinTypeCheckError`] is analogous to the above but is
/// returned from [`DeserializeValue::type_check`] instead both in the case of
/// builtin impls and impls generated by the `DeserializeValue` macro.
/// It won't be returned by the `Session` directly, but it might be nested
/// in the [`row::BuiltinTypeCheckError`].
#[derive(Debug, Clone, Error)]
#[error("TypeCheckError: {0}")]
pub struct TypeCheckError(pub(crate) Arc<dyn std::error::Error + Send + Sync>);
impl TypeCheckError {
/// Constructs a new `TypeCheckError`.
#[inline]
pub fn new(err: impl std::error::Error + Send + Sync + 'static) -> Self {
Self(Arc::new(err))
}
/// Retrieve an error reason by downcasting to specific type.
pub fn downcast_ref<T: std::error::Error + 'static>(&self) -> Option<&T> {
self.0.downcast_ref()
}
}
/// An error indicating that a failure happened during deserialization.
///
/// The error is type-erased so that the crate users can define their own
/// deserialization impls and their errors. As for the impls defined or generated
/// by the driver itself, the following errors can be returned:
///
/// - [`row::BuiltinDeserializationError`] is returned when deserialization of
/// one of types with an impl built into the driver fails. It is also returned
/// from impls generated by the `DeserializeRow` macro.
/// - [`value::BuiltinDeserializationError`] is analogous to the above but is
/// returned from [`DeserializeValue::deserialize`] instead both in the case of
/// builtin impls and impls generated by the `DeserializeValue` macro.
/// It won't be returned by the `Session` directly, but it might be nested
/// in the [`row::BuiltinDeserializationError`].
#[derive(Debug, Clone, Error)]
#[error("DeserializationError: {0}")]
pub struct DeserializationError(Arc<dyn Error + Send + Sync>);
impl DeserializationError {
/// Constructs a new `DeserializationError`.
#[inline]
pub fn new(err: impl Error + Send + Sync + 'static) -> Self {
Self(Arc::new(err))
}
/// Retrieve an error reason by downcasting to specific type.
pub fn downcast_ref<T: Error + 'static>(&self) -> Option<&T> {
self.0.downcast_ref()
}
}
// This is a hack to enable setting the proper Rust type name in error messages,
// even though the error originates from some helper type used underneath.
// ASSUMPTION: This should be used:
// - ONLY in proper type_check()/deserialize() implementation,
// - BEFORE an error is cloned (because otherwise the Arc::get_mut fails).
macro_rules! make_error_replace_rust_name {
($fn_name: ident, $outer_err: ty, $inner_err: ty) => {
// Not part of the public API; used in derive macros.
#[doc(hidden)]
pub fn $fn_name<RustT>(mut err: $outer_err) -> $outer_err {
// Safety: the assumed usage of this function guarantees that the Arc has not yet been cloned.
let arc_mut = std::sync::Arc::get_mut(&mut err.0).unwrap();
let rust_name: &mut &str = {
if let Some(err) = arc_mut.downcast_mut::<$inner_err>() {
&mut err.rust_name
} else {
unreachable!(concat!(
"This function is assumed to be called only on built-in ",
stringify!($inner_err),
" kinds."
))
}
};
*rust_name = std::any::type_name::<RustT>();
err
}
};
}
use make_error_replace_rust_name;
#[cfg(test)]
pub(crate) mod tests {
use bytes::{Bytes, BytesMut};
use crate::frame::response::result::{ColumnSpec, ColumnType, TableSpec};
use crate::frame::types;
pub(super) static CELL1: &[u8] = &[1, 2, 3];
pub(super) static CELL2: &[u8] = &[4, 5, 6, 7];
pub(super) fn serialize_cells(
cells: impl IntoIterator<Item = Option<impl AsRef<[u8]>>>,
) -> Bytes {
let mut bytes = BytesMut::new();
for cell in cells {
types::write_bytes_opt(cell, &mut bytes).unwrap();
}
bytes.freeze()
}
pub(crate) const fn spec<'a>(name: &'a str, typ: ColumnType<'a>) -> ColumnSpec<'a> {
ColumnSpec::borrowed(name, typ, TableSpec::borrowed("ks", "tbl"))
}
}