wasmtime/runtime/func.rs
1use crate::prelude::*;
2use crate::runtime::vm::{
3 ExportFunction, SendSyncPtr, StoreBox, VMArrayCallHostFuncContext, VMContext, VMFuncRef,
4 VMFunctionImport, VMOpaqueContext,
5};
6use crate::runtime::Uninhabited;
7use crate::store::{AutoAssertNoGc, StoreData, StoreOpaque, Stored};
8use crate::type_registry::RegisteredType;
9use crate::{
10 AsContext, AsContextMut, CallHook, Engine, Extern, FuncType, Instance, Module, Ref,
11 StoreContext, StoreContextMut, Val, ValRaw, ValType,
12};
13use alloc::sync::Arc;
14use core::ffi::c_void;
15use core::future::Future;
16use core::mem::{self, MaybeUninit};
17use core::num::NonZeroUsize;
18use core::pin::Pin;
19use core::ptr::{self, NonNull};
20use wasmtime_environ::VMSharedTypeIndex;
21
22/// A reference to the abstract `nofunc` heap value.
23///
24/// The are no instances of `(ref nofunc)`: it is an uninhabited type.
25///
26/// There is precisely one instance of `(ref null nofunc)`, aka `nullfuncref`:
27/// the null reference.
28///
29/// This `NoFunc` Rust type's sole purpose is for use with [`Func::wrap`]- and
30/// [`Func::typed`]-style APIs for statically typing a function as taking or
31/// returning a `(ref null nofunc)` (aka `Option<NoFunc>`) which is always
32/// `None`.
33///
34/// # Example
35///
36/// ```
37/// # use wasmtime::*;
38/// # fn _foo() -> Result<()> {
39/// let mut config = Config::new();
40/// config.wasm_function_references(true);
41/// let engine = Engine::new(&config)?;
42///
43/// let module = Module::new(
44/// &engine,
45/// r#"
46/// (module
47/// (func (export "f") (param (ref null nofunc))
48/// ;; If the reference is null, return.
49/// local.get 0
50/// ref.is_null nofunc
51/// br_if 0
52///
53/// ;; If the reference was not null (which is impossible)
54/// ;; then raise a trap.
55/// unreachable
56/// )
57/// )
58/// "#,
59/// )?;
60///
61/// let mut store = Store::new(&engine, ());
62/// let instance = Instance::new(&mut store, &module, &[])?;
63/// let f = instance.get_func(&mut store, "f").unwrap();
64///
65/// // We can cast a `(ref null nofunc)`-taking function into a typed function that
66/// // takes an `Option<NoFunc>` via the `Func::typed` method.
67/// let f = f.typed::<Option<NoFunc>, ()>(&store)?;
68///
69/// // We can call the typed function, passing the null `nofunc` reference.
70/// let result = f.call(&mut store, NoFunc::null());
71///
72/// // The function should not have trapped, because the reference we gave it was
73/// // null (as it had to be, since `NoFunc` is uninhabited).
74/// assert!(result.is_ok());
75/// # Ok(())
76/// # }
77/// ```
78#[derive(Copy, Clone, Debug, PartialEq, Eq)]
79pub struct NoFunc {
80 _inner: Uninhabited,
81}
82
83impl NoFunc {
84 /// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference.
85 #[inline]
86 pub fn null() -> Option<NoFunc> {
87 None
88 }
89
90 /// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference as a
91 /// [`Ref`].
92 #[inline]
93 pub fn null_ref() -> Ref {
94 Ref::Func(None)
95 }
96
97 /// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference as a
98 /// [`Val`].
99 #[inline]
100 pub fn null_val() -> Val {
101 Val::FuncRef(None)
102 }
103}
104
105/// A WebAssembly function which can be called.
106///
107/// This type typically represents an exported function from a WebAssembly
108/// module instance. In this case a [`Func`] belongs to an [`Instance`] and is
109/// loaded from there. A [`Func`] may also represent a host function as well in
110/// some cases, too.
111///
112/// Functions can be called in a few different ways, either synchronous or async
113/// and either typed or untyped (more on this below). Note that host functions
114/// are normally inserted directly into a [`Linker`](crate::Linker) rather than
115/// using this directly, but both options are available.
116///
117/// # `Func` and `async`
118///
119/// Functions from the perspective of WebAssembly are always synchronous. You
120/// might have an `async` function in Rust, however, which you'd like to make
121/// available from WebAssembly. Wasmtime supports asynchronously calling
122/// WebAssembly through native stack switching. You can get some more
123/// information about [asynchronous configs](crate::Config::async_support), but
124/// from the perspective of `Func` it's important to know that whether or not
125/// your [`Store`](crate::Store) is asynchronous will dictate whether you call
126/// functions through [`Func::call`] or [`Func::call_async`] (or the typed
127/// wrappers such as [`TypedFunc::call`] vs [`TypedFunc::call_async`]).
128///
129/// # To `Func::call` or to `Func::typed().call()`
130///
131/// There's a 2x2 matrix of methods to call [`Func`]. Invocations can either be
132/// asynchronous or synchronous. They can also be statically typed or not.
133/// Whether or not an invocation is asynchronous is indicated via the method
134/// being `async` and [`call_async`](Func::call_async) being the entry point.
135/// Otherwise for statically typed or not your options are:
136///
137/// * Dynamically typed - if you don't statically know the signature of the
138/// function that you're calling you'll be using [`Func::call`] or
139/// [`Func::call_async`]. These functions take a variable-length slice of
140/// "boxed" arguments in their [`Val`] representation. Additionally the
141/// results are returned as an owned slice of [`Val`]. These methods are not
142/// optimized due to the dynamic type checks that must occur, in addition to
143/// some dynamic allocations for where to put all the arguments. While this
144/// allows you to call all possible wasm function signatures, if you're
145/// looking for a speedier alternative you can also use...
146///
147/// * Statically typed - if you statically know the type signature of the wasm
148/// function you're calling, then you'll want to use the [`Func::typed`]
149/// method to acquire an instance of [`TypedFunc`]. This structure is static proof
150/// that the underlying wasm function has the ascripted type, and type
151/// validation is only done once up-front. The [`TypedFunc::call`] and
152/// [`TypedFunc::call_async`] methods are much more efficient than [`Func::call`]
153/// and [`Func::call_async`] because the type signature is statically known.
154/// This eschews runtime checks as much as possible to get into wasm as fast
155/// as possible.
156///
157/// # Examples
158///
159/// One way to get a `Func` is from an [`Instance`] after you've instantiated
160/// it:
161///
162/// ```
163/// # use wasmtime::*;
164/// # fn main() -> anyhow::Result<()> {
165/// let engine = Engine::default();
166/// let module = Module::new(&engine, r#"(module (func (export "foo")))"#)?;
167/// let mut store = Store::new(&engine, ());
168/// let instance = Instance::new(&mut store, &module, &[])?;
169/// let foo = instance.get_func(&mut store, "foo").expect("export wasn't a function");
170///
171/// // Work with `foo` as a `Func` at this point, such as calling it
172/// // dynamically...
173/// match foo.call(&mut store, &[], &mut []) {
174/// Ok(()) => { /* ... */ }
175/// Err(trap) => {
176/// panic!("execution of `foo` resulted in a wasm trap: {}", trap);
177/// }
178/// }
179/// foo.call(&mut store, &[], &mut [])?;
180///
181/// // ... or we can make a static assertion about its signature and call it.
182/// // Our first call here can fail if the signatures don't match, and then the
183/// // second call can fail if the function traps (like the `match` above).
184/// let foo = foo.typed::<(), ()>(&store)?;
185/// foo.call(&mut store, ())?;
186/// # Ok(())
187/// # }
188/// ```
189///
190/// You can also use the [`wrap` function](Func::wrap) to create a
191/// `Func`
192///
193/// ```
194/// # use wasmtime::*;
195/// # fn main() -> anyhow::Result<()> {
196/// let mut store = Store::<()>::default();
197///
198/// // Create a custom `Func` which can execute arbitrary code inside of the
199/// // closure.
200/// let add = Func::wrap(&mut store, |a: i32, b: i32| -> i32 { a + b });
201///
202/// // Next we can hook that up to a wasm module which uses it.
203/// let module = Module::new(
204/// store.engine(),
205/// r#"
206/// (module
207/// (import "" "" (func $add (param i32 i32) (result i32)))
208/// (func (export "call_add_twice") (result i32)
209/// i32.const 1
210/// i32.const 2
211/// call $add
212/// i32.const 3
213/// i32.const 4
214/// call $add
215/// i32.add))
216/// "#,
217/// )?;
218/// let instance = Instance::new(&mut store, &module, &[add.into()])?;
219/// let call_add_twice = instance.get_typed_func::<(), i32>(&mut store, "call_add_twice")?;
220///
221/// assert_eq!(call_add_twice.call(&mut store, ())?, 10);
222/// # Ok(())
223/// # }
224/// ```
225///
226/// Or you could also create an entirely dynamic `Func`!
227///
228/// ```
229/// # use wasmtime::*;
230/// # fn main() -> anyhow::Result<()> {
231/// let mut store = Store::<()>::default();
232///
233/// // Here we need to define the type signature of our `Double` function and
234/// // then wrap it up in a `Func`
235/// let double_type = wasmtime::FuncType::new(
236/// store.engine(),
237/// [wasmtime::ValType::I32].iter().cloned(),
238/// [wasmtime::ValType::I32].iter().cloned(),
239/// );
240/// let double = Func::new(&mut store, double_type, |_, params, results| {
241/// let mut value = params[0].unwrap_i32();
242/// value *= 2;
243/// results[0] = value.into();
244/// Ok(())
245/// });
246///
247/// let module = Module::new(
248/// store.engine(),
249/// r#"
250/// (module
251/// (import "" "" (func $double (param i32) (result i32)))
252/// (func $start
253/// i32.const 1
254/// call $double
255/// drop)
256/// (start $start))
257/// "#,
258/// )?;
259/// let instance = Instance::new(&mut store, &module, &[double.into()])?;
260/// // .. work with `instance` if necessary
261/// # Ok(())
262/// # }
263/// ```
264#[derive(Copy, Clone, Debug)]
265#[repr(transparent)] // here for the C API
266pub struct Func(Stored<FuncData>);
267
268pub(crate) struct FuncData {
269 kind: FuncKind,
270
271 // A pointer to the in-store `VMFuncRef` for this function, if
272 // any.
273 //
274 // When a function is passed to Wasm but doesn't have a Wasm-to-native
275 // trampoline, we have to patch it in. But that requires mutating the
276 // `VMFuncRef`, and this function could be shared across
277 // threads. So we instead copy and pin the `VMFuncRef` into
278 // `StoreOpaque::func_refs`, where we can safely patch the field without
279 // worrying about synchronization and we hold a pointer to it here so we can
280 // reuse it rather than re-copy if it is passed to Wasm again.
281 in_store_func_ref: Option<SendSyncPtr<VMFuncRef>>,
282
283 // This is somewhat expensive to load from the `Engine` and in most
284 // optimized use cases (e.g. `TypedFunc`) it's not actually needed or it's
285 // only needed rarely. To handle that this is an optionally-contained field
286 // which is lazily loaded into as part of `Func::call`.
287 //
288 // Also note that this is intentionally placed behind a pointer to keep it
289 // small as `FuncData` instances are often inserted into a `Store`.
290 ty: Option<Box<FuncType>>,
291}
292
293/// The three ways that a function can be created and referenced from within a
294/// store.
295enum FuncKind {
296 /// A function already owned by the store via some other means. This is
297 /// used, for example, when creating a `Func` from an instance's exported
298 /// function. The instance's `InstanceHandle` is already owned by the store
299 /// and we just have some pointers into that which represent how to call the
300 /// function.
301 StoreOwned { export: ExportFunction },
302
303 /// A function is shared across possibly other stores, hence the `Arc`. This
304 /// variant happens when a `Linker`-defined function is instantiated within
305 /// a `Store` (e.g. via `Linker::get` or similar APIs). The `Arc` here
306 /// indicates that there's some number of other stores holding this function
307 /// too, so dropping this may not deallocate the underlying
308 /// `InstanceHandle`.
309 SharedHost(Arc<HostFunc>),
310
311 /// A uniquely-owned host function within a `Store`. This comes about with
312 /// `Func::new` or similar APIs. The `HostFunc` internally owns the
313 /// `InstanceHandle` and that will get dropped when this `HostFunc` itself
314 /// is dropped.
315 ///
316 /// Note that this is intentionally placed behind a `Box` to minimize the
317 /// size of this enum since the most common variant for high-performance
318 /// situations is `SharedHost` and `StoreOwned`, so this ideally isn't
319 /// larger than those two.
320 Host(Box<HostFunc>),
321
322 /// A reference to a `HostFunc`, but one that's "rooted" in the `Store`
323 /// itself.
324 ///
325 /// This variant is created when an `InstancePre<T>` is instantiated in to a
326 /// `Store<T>`. In that situation the `InstancePre<T>` already has a list of
327 /// host functions that are packaged up in an `Arc`, so the `Arc<[T]>` is
328 /// cloned once into the `Store` to avoid each individual function requiring
329 /// an `Arc::clone`.
330 ///
331 /// The lifetime management of this type is `unsafe` because
332 /// `RootedHostFunc` is a small wrapper around `NonNull<HostFunc>`. To be
333 /// safe this is required that the memory of the host function is pinned
334 /// elsewhere (e.g. the `Arc` in the `Store`).
335 RootedHost(RootedHostFunc),
336}
337
338macro_rules! for_each_function_signature {
339 ($mac:ident) => {
340 $mac!(0);
341 $mac!(1 A1);
342 $mac!(2 A1 A2);
343 $mac!(3 A1 A2 A3);
344 $mac!(4 A1 A2 A3 A4);
345 $mac!(5 A1 A2 A3 A4 A5);
346 $mac!(6 A1 A2 A3 A4 A5 A6);
347 $mac!(7 A1 A2 A3 A4 A5 A6 A7);
348 $mac!(8 A1 A2 A3 A4 A5 A6 A7 A8);
349 $mac!(9 A1 A2 A3 A4 A5 A6 A7 A8 A9);
350 $mac!(10 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10);
351 $mac!(11 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11);
352 $mac!(12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12);
353 $mac!(13 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13);
354 $mac!(14 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14);
355 $mac!(15 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15);
356 $mac!(16 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16);
357 $mac!(17 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17);
358 };
359}
360
361mod typed;
362pub use typed::*;
363
364impl Func {
365 /// Creates a new `Func` with the given arguments, typically to create a
366 /// host-defined function to pass as an import to a module.
367 ///
368 /// * `store` - the store in which to create this [`Func`], which will own
369 /// the return value.
370 ///
371 /// * `ty` - the signature of this function, used to indicate what the
372 /// inputs and outputs are.
373 ///
374 /// * `func` - the native code invoked whenever this `Func` will be called.
375 /// This closure is provided a [`Caller`] as its first argument to learn
376 /// information about the caller, and then it's passed a list of
377 /// parameters as a slice along with a mutable slice of where to write
378 /// results.
379 ///
380 /// Note that the implementation of `func` must adhere to the `ty` signature
381 /// given, error or traps may occur if it does not respect the `ty`
382 /// signature. For example if the function type declares that it returns one
383 /// i32 but the `func` closures does not write anything into the results
384 /// slice then a trap may be generated.
385 ///
386 /// Additionally note that this is quite a dynamic function since signatures
387 /// are not statically known. For a more performant and ergonomic `Func`
388 /// it's recommended to use [`Func::wrap`] if you can because with
389 /// statically known signatures Wasmtime can optimize the implementation
390 /// much more.
391 ///
392 /// For more information about `Send + Sync + 'static` requirements on the
393 /// `func`, see [`Func::wrap`](#why-send--sync--static).
394 ///
395 /// # Errors
396 ///
397 /// The host-provided function here returns a
398 /// [`Result<()>`](anyhow::Result). If the function returns `Ok(())` then
399 /// that indicates that the host function completed successfully and wrote
400 /// the result into the `&mut [Val]` argument.
401 ///
402 /// If the function returns `Err(e)`, however, then this is equivalent to
403 /// the host function triggering a trap for wasm. WebAssembly execution is
404 /// immediately halted and the original caller of [`Func::call`], for
405 /// example, will receive the error returned here (possibly with
406 /// [`WasmBacktrace`](crate::WasmBacktrace) context information attached).
407 ///
408 /// For more information about errors in Wasmtime see the [`Trap`]
409 /// documentation.
410 ///
411 /// [`Trap`]: crate::Trap
412 ///
413 /// # Panics
414 ///
415 /// Panics if the given function type is not associated with this store's
416 /// engine.
417 pub fn new<T>(
418 store: impl AsContextMut<Data = T>,
419 ty: FuncType,
420 func: impl Fn(Caller<'_, T>, &[Val], &mut [Val]) -> Result<()> + Send + Sync + 'static,
421 ) -> Self {
422 assert!(ty.comes_from_same_engine(store.as_context().engine()));
423 let ty_clone = ty.clone();
424 unsafe {
425 Func::new_unchecked(store, ty, move |caller, values| {
426 Func::invoke_host_func_for_wasm(caller, &ty_clone, values, &func)
427 })
428 }
429 }
430
431 /// Creates a new [`Func`] with the given arguments, although has fewer
432 /// runtime checks than [`Func::new`].
433 ///
434 /// This function takes a callback of a different signature than
435 /// [`Func::new`], instead receiving a raw pointer with a list of [`ValRaw`]
436 /// structures. These values have no type information associated with them
437 /// so it's up to the caller to provide a function that will correctly
438 /// interpret the list of values as those coming from the `ty` specified.
439 ///
440 /// If you're calling this from Rust it's recommended to either instead use
441 /// [`Func::new`] or [`Func::wrap`]. The [`Func::wrap`] API, in particular,
442 /// is both safer and faster than this API.
443 ///
444 /// # Errors
445 ///
446 /// See [`Func::new`] for the behavior of returning an error from the host
447 /// function provided here.
448 ///
449 /// # Unsafety
450 ///
451 /// This function is not safe because it's not known at compile time that
452 /// the `func` provided correctly interprets the argument types provided to
453 /// it, or that the results it produces will be of the correct type.
454 ///
455 /// # Panics
456 ///
457 /// Panics if the given function type is not associated with this store's
458 /// engine.
459 pub unsafe fn new_unchecked<T>(
460 mut store: impl AsContextMut<Data = T>,
461 ty: FuncType,
462 func: impl Fn(Caller<'_, T>, &mut [ValRaw]) -> Result<()> + Send + Sync + 'static,
463 ) -> Self {
464 assert!(ty.comes_from_same_engine(store.as_context().engine()));
465 let store = store.as_context_mut().0;
466 let host = HostFunc::new_unchecked(store.engine(), ty, func);
467 host.into_func(store)
468 }
469
470 /// Creates a new host-defined WebAssembly function which, when called,
471 /// will run the asynchronous computation defined by `func` to completion
472 /// and then return the result to WebAssembly.
473 ///
474 /// This function is the asynchronous analogue of [`Func::new`] and much of
475 /// that documentation applies to this as well. The key difference is that
476 /// `func` returns a future instead of simply a `Result`. Note that the
477 /// returned future can close over any of the arguments, but it cannot close
478 /// over the state of the closure itself. It's recommended to store any
479 /// necessary async state in the `T` of the [`Store<T>`](crate::Store) which
480 /// can be accessed through [`Caller::data`] or [`Caller::data_mut`].
481 ///
482 /// For more information on `Send + Sync + 'static`, see
483 /// [`Func::wrap`](#why-send--sync--static).
484 ///
485 /// # Panics
486 ///
487 /// This function will panic if `store` is not associated with an [async
488 /// config](crate::Config::async_support).
489 ///
490 /// Panics if the given function type is not associated with this store's
491 /// engine.
492 ///
493 /// # Errors
494 ///
495 /// See [`Func::new`] for the behavior of returning an error from the host
496 /// function provided here.
497 ///
498 /// # Examples
499 ///
500 /// ```
501 /// # use wasmtime::*;
502 /// # fn main() -> anyhow::Result<()> {
503 /// // Simulate some application-specific state as well as asynchronous
504 /// // functions to query that state.
505 /// struct MyDatabase {
506 /// // ...
507 /// }
508 ///
509 /// impl MyDatabase {
510 /// async fn get_row_count(&self) -> u32 {
511 /// // ...
512 /// # 100
513 /// }
514 /// }
515 ///
516 /// let my_database = MyDatabase {
517 /// // ...
518 /// };
519 ///
520 /// // Using `new_async` we can hook up into calling our async
521 /// // `get_row_count` function.
522 /// let engine = Engine::new(Config::new().async_support(true))?;
523 /// let mut store = Store::new(&engine, MyDatabase {
524 /// // ...
525 /// });
526 /// let get_row_count_type = wasmtime::FuncType::new(
527 /// &engine,
528 /// None,
529 /// Some(wasmtime::ValType::I32),
530 /// );
531 /// let get = Func::new_async(&mut store, get_row_count_type, |caller, _params, results| {
532 /// Box::new(async move {
533 /// let count = caller.data().get_row_count().await;
534 /// results[0] = Val::I32(count as i32);
535 /// Ok(())
536 /// })
537 /// });
538 /// // ...
539 /// # Ok(())
540 /// # }
541 /// ```
542 #[cfg(all(feature = "async", feature = "cranelift"))]
543 pub fn new_async<T, F>(store: impl AsContextMut<Data = T>, ty: FuncType, func: F) -> Func
544 where
545 F: for<'a> Fn(
546 Caller<'a, T>,
547 &'a [Val],
548 &'a mut [Val],
549 ) -> Box<dyn Future<Output = Result<()>> + Send + 'a>
550 + Send
551 + Sync
552 + 'static,
553 {
554 assert!(
555 store.as_context().async_support(),
556 "cannot use `new_async` without enabling async support in the config"
557 );
558 assert!(ty.comes_from_same_engine(store.as_context().engine()));
559 Func::new(store, ty, move |mut caller, params, results| {
560 let async_cx = caller
561 .store
562 .as_context_mut()
563 .0
564 .async_cx()
565 .expect("Attempt to spawn new action on dying fiber");
566 let mut future = Pin::from(func(caller, params, results));
567 match unsafe { async_cx.block_on(future.as_mut()) } {
568 Ok(Ok(())) => Ok(()),
569 Ok(Err(trap)) | Err(trap) => Err(trap),
570 }
571 })
572 }
573
574 pub(crate) unsafe fn from_vm_func_ref(
575 store: &mut StoreOpaque,
576 raw: *mut VMFuncRef,
577 ) -> Option<Func> {
578 let func_ref = NonNull::new(raw)?;
579 debug_assert!(func_ref.as_ref().type_index != VMSharedTypeIndex::default());
580 let export = ExportFunction { func_ref };
581 Some(Func::from_wasmtime_function(export, store))
582 }
583
584 /// Creates a new `Func` from the given Rust closure.
585 ///
586 /// This function will create a new `Func` which, when called, will
587 /// execute the given Rust closure. Unlike [`Func::new`] the target
588 /// function being called is known statically so the type signature can
589 /// be inferred. Rust types will map to WebAssembly types as follows:
590 ///
591 /// | Rust Argument Type | WebAssembly Type |
592 /// |-----------------------------------|-------------------------------------------|
593 /// | `i32` | `i32` |
594 /// | `u32` | `i32` |
595 /// | `i64` | `i64` |
596 /// | `u64` | `i64` |
597 /// | `f32` | `f32` |
598 /// | `f64` | `f64` |
599 /// | `V128` on x86-64 and aarch64 only | `v128` |
600 /// | `Option<Func>` | `funcref` aka `(ref null func)` |
601 /// | `Func` | `(ref func)` |
602 /// | `Option<Nofunc>` | `nullfuncref` aka `(ref null nofunc)` |
603 /// | `NoFunc` | `(ref nofunc)` |
604 /// | `Option<ExternRef>` | `externref` aka `(ref null extern)` |
605 /// | `ExternRef` | `(ref extern)` |
606 /// | `Option<NoExtern>` | `nullexternref` aka `(ref null noextern)` |
607 /// | `NoExtern` | `(ref noextern)` |
608 /// | `Option<AnyRef>` | `anyref` aka `(ref null any)` |
609 /// | `AnyRef` | `(ref any)` |
610 /// | `Option<I31>` | `i31ref` aka `(ref null i31)` |
611 /// | `I31` | `(ref i31)` |
612 /// | `Option<StructRef>` | `(ref null struct)` |
613 /// | `StructRef` | `(ref struct)` |
614 /// | `Option<ArrayRef>` | `(ref null array)` |
615 /// | `ArrayRef` | `(ref array)` |
616 ///
617 /// Any of the Rust types can be returned from the closure as well, in
618 /// addition to some extra types
619 ///
620 /// | Rust Return Type | WebAssembly Return Type | Meaning |
621 /// |-------------------|-------------------------|-----------------------|
622 /// | `()` | nothing | no return value |
623 /// | `T` | `T` | a single return value |
624 /// | `(T1, T2, ...)` | `T1 T2 ...` | multiple returns |
625 ///
626 /// Note that all return types can also be wrapped in `Result<_>` to
627 /// indicate that the host function can generate a trap as well as possibly
628 /// returning a value.
629 ///
630 /// Finally you can also optionally take [`Caller`] as the first argument of
631 /// your closure. If inserted then you're able to inspect the caller's
632 /// state, for example the [`Memory`](crate::Memory) it has exported so you
633 /// can read what pointers point to.
634 ///
635 /// Note that when using this API, the intention is to create as thin of a
636 /// layer as possible for when WebAssembly calls the function provided. With
637 /// sufficient inlining and optimization the WebAssembly will call straight
638 /// into `func` provided, with no extra fluff entailed.
639 ///
640 /// # Why `Send + Sync + 'static`?
641 ///
642 /// All host functions defined in a [`Store`](crate::Store) (including
643 /// those from [`Func::new`] and other constructors) require that the
644 /// `func` provided is `Send + Sync + 'static`. Additionally host functions
645 /// always are `Fn` as opposed to `FnMut` or `FnOnce`. This can at-a-glance
646 /// feel restrictive since the closure cannot close over as many types as
647 /// before. The reason for this, though, is to ensure that
648 /// [`Store<T>`](crate::Store) can implement both the `Send` and `Sync`
649 /// traits.
650 ///
651 /// Fear not, however, because this isn't as restrictive as it seems! Host
652 /// functions are provided a [`Caller<'_, T>`](crate::Caller) argument which
653 /// allows access to the host-defined data within the
654 /// [`Store`](crate::Store). The `T` type is not required to be any of
655 /// `Send`, `Sync`, or `'static`! This means that you can store whatever
656 /// you'd like in `T` and have it accessible by all host functions.
657 /// Additionally mutable access to `T` is allowed through
658 /// [`Caller::data_mut`].
659 ///
660 /// Most host-defined [`Func`] values provide closures that end up not
661 /// actually closing over any values. These zero-sized types will use the
662 /// context from [`Caller`] for host-defined information.
663 ///
664 /// # Errors
665 ///
666 /// The closure provided here to `wrap` can optionally return a
667 /// [`Result<T>`](anyhow::Result). Returning `Ok(t)` represents the host
668 /// function successfully completing with the `t` result. Returning
669 /// `Err(e)`, however, is equivalent to raising a custom wasm trap.
670 /// Execution of WebAssembly does not resume and the stack is unwound to the
671 /// original caller of the function where the error is returned.
672 ///
673 /// For more information about errors in Wasmtime see the [`Trap`]
674 /// documentation.
675 ///
676 /// [`Trap`]: crate::Trap
677 ///
678 /// # Examples
679 ///
680 /// First up we can see how simple wasm imports can be implemented, such
681 /// as a function that adds its two arguments and returns the result.
682 ///
683 /// ```
684 /// # use wasmtime::*;
685 /// # fn main() -> anyhow::Result<()> {
686 /// # let mut store = Store::<()>::default();
687 /// let add = Func::wrap(&mut store, |a: i32, b: i32| a + b);
688 /// let module = Module::new(
689 /// store.engine(),
690 /// r#"
691 /// (module
692 /// (import "" "" (func $add (param i32 i32) (result i32)))
693 /// (func (export "foo") (param i32 i32) (result i32)
694 /// local.get 0
695 /// local.get 1
696 /// call $add))
697 /// "#,
698 /// )?;
699 /// let instance = Instance::new(&mut store, &module, &[add.into()])?;
700 /// let foo = instance.get_typed_func::<(i32, i32), i32>(&mut store, "foo")?;
701 /// assert_eq!(foo.call(&mut store, (1, 2))?, 3);
702 /// # Ok(())
703 /// # }
704 /// ```
705 ///
706 /// We can also do the same thing, but generate a trap if the addition
707 /// overflows:
708 ///
709 /// ```
710 /// # use wasmtime::*;
711 /// # fn main() -> anyhow::Result<()> {
712 /// # let mut store = Store::<()>::default();
713 /// let add = Func::wrap(&mut store, |a: i32, b: i32| {
714 /// match a.checked_add(b) {
715 /// Some(i) => Ok(i),
716 /// None => anyhow::bail!("overflow"),
717 /// }
718 /// });
719 /// let module = Module::new(
720 /// store.engine(),
721 /// r#"
722 /// (module
723 /// (import "" "" (func $add (param i32 i32) (result i32)))
724 /// (func (export "foo") (param i32 i32) (result i32)
725 /// local.get 0
726 /// local.get 1
727 /// call $add))
728 /// "#,
729 /// )?;
730 /// let instance = Instance::new(&mut store, &module, &[add.into()])?;
731 /// let foo = instance.get_typed_func::<(i32, i32), i32>(&mut store, "foo")?;
732 /// assert_eq!(foo.call(&mut store, (1, 2))?, 3);
733 /// assert!(foo.call(&mut store, (i32::max_value(), 1)).is_err());
734 /// # Ok(())
735 /// # }
736 /// ```
737 ///
738 /// And don't forget all the wasm types are supported!
739 ///
740 /// ```
741 /// # use wasmtime::*;
742 /// # fn main() -> anyhow::Result<()> {
743 /// # let mut store = Store::<()>::default();
744 /// let debug = Func::wrap(&mut store, |a: i32, b: u32, c: f32, d: i64, e: u64, f: f64| {
745 ///
746 /// println!("a={}", a);
747 /// println!("b={}", b);
748 /// println!("c={}", c);
749 /// println!("d={}", d);
750 /// println!("e={}", e);
751 /// println!("f={}", f);
752 /// });
753 /// let module = Module::new(
754 /// store.engine(),
755 /// r#"
756 /// (module
757 /// (import "" "" (func $debug (param i32 i32 f32 i64 i64 f64)))
758 /// (func (export "foo")
759 /// i32.const -1
760 /// i32.const 1
761 /// f32.const 2
762 /// i64.const -3
763 /// i64.const 3
764 /// f64.const 4
765 /// call $debug))
766 /// "#,
767 /// )?;
768 /// let instance = Instance::new(&mut store, &module, &[debug.into()])?;
769 /// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
770 /// foo.call(&mut store, ())?;
771 /// # Ok(())
772 /// # }
773 /// ```
774 ///
775 /// Finally if you want to get really fancy you can also implement
776 /// imports that read/write wasm module's memory
777 ///
778 /// ```
779 /// use std::str;
780 ///
781 /// # use wasmtime::*;
782 /// # fn main() -> anyhow::Result<()> {
783 /// # let mut store = Store::default();
784 /// let log_str = Func::wrap(&mut store, |mut caller: Caller<'_, ()>, ptr: i32, len: i32| {
785 /// let mem = match caller.get_export("memory") {
786 /// Some(Extern::Memory(mem)) => mem,
787 /// _ => anyhow::bail!("failed to find host memory"),
788 /// };
789 /// let data = mem.data(&caller)
790 /// .get(ptr as u32 as usize..)
791 /// .and_then(|arr| arr.get(..len as u32 as usize));
792 /// let string = match data {
793 /// Some(data) => match str::from_utf8(data) {
794 /// Ok(s) => s,
795 /// Err(_) => anyhow::bail!("invalid utf-8"),
796 /// },
797 /// None => anyhow::bail!("pointer/length out of bounds"),
798 /// };
799 /// assert_eq!(string, "Hello, world!");
800 /// println!("{}", string);
801 /// Ok(())
802 /// });
803 /// let module = Module::new(
804 /// store.engine(),
805 /// r#"
806 /// (module
807 /// (import "" "" (func $log_str (param i32 i32)))
808 /// (func (export "foo")
809 /// i32.const 4 ;; ptr
810 /// i32.const 13 ;; len
811 /// call $log_str)
812 /// (memory (export "memory") 1)
813 /// (data (i32.const 4) "Hello, world!"))
814 /// "#,
815 /// )?;
816 /// let instance = Instance::new(&mut store, &module, &[log_str.into()])?;
817 /// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
818 /// foo.call(&mut store, ())?;
819 /// # Ok(())
820 /// # }
821 /// ```
822 pub fn wrap<T, Params, Results>(
823 mut store: impl AsContextMut<Data = T>,
824 func: impl IntoFunc<T, Params, Results>,
825 ) -> Func {
826 let store = store.as_context_mut().0;
827 // part of this unsafety is about matching the `T` to a `Store<T>`,
828 // which is done through the `AsContextMut` bound above.
829 unsafe {
830 let host = HostFunc::wrap(store.engine(), func);
831 host.into_func(store)
832 }
833 }
834
835 fn wrap_inner<F, T, Params, Results>(mut store: impl AsContextMut<Data = T>, func: F) -> Func
836 where
837 F: Fn(Caller<'_, T>, Params) -> Results + Send + Sync + 'static,
838 Params: WasmTyList,
839 Results: WasmRet,
840 {
841 let store = store.as_context_mut().0;
842 // part of this unsafety is about matching the `T` to a `Store<T>`,
843 // which is done through the `AsContextMut` bound above.
844 unsafe {
845 let host = HostFunc::wrap_inner(store.engine(), func);
846 host.into_func(store)
847 }
848 }
849
850 /// Same as [`Func::wrap`], except the closure asynchronously produces the
851 /// result and the arguments are passed within a tuple. For more information
852 /// see the [`Func`] documentation.
853 ///
854 /// # Panics
855 ///
856 /// This function will panic if called with a non-asynchronous store.
857 #[cfg(feature = "async")]
858 pub fn wrap_async<T, F, P, R>(store: impl AsContextMut<Data = T>, func: F) -> Func
859 where
860 F: for<'a> Fn(Caller<'a, T>, P) -> Box<dyn Future<Output = R> + Send + 'a>
861 + Send
862 + Sync
863 + 'static,
864 P: WasmTyList,
865 R: WasmRet,
866 {
867 assert!(
868 store.as_context().async_support(),
869 concat!("cannot use `wrap_async` without enabling async support on the config")
870 );
871 Func::wrap_inner(store, move |mut caller: Caller<'_, T>, args| {
872 let async_cx = caller
873 .store
874 .as_context_mut()
875 .0
876 .async_cx()
877 .expect("Attempt to start async function on dying fiber");
878 let mut future = Pin::from(func(caller, args));
879
880 match unsafe { async_cx.block_on(future.as_mut()) } {
881 Ok(ret) => ret.into_fallible(),
882 Err(e) => R::fallible_from_error(e),
883 }
884 })
885 }
886
887 /// Returns the underlying wasm type that this `Func` has.
888 ///
889 /// # Panics
890 ///
891 /// Panics if `store` does not own this function.
892 pub fn ty(&self, store: impl AsContext) -> FuncType {
893 self.load_ty(&store.as_context().0)
894 }
895
896 /// Forcibly loads the type of this function from the `Engine`.
897 ///
898 /// Note that this is a somewhat expensive method since it requires taking a
899 /// lock as well as cloning a type.
900 pub(crate) fn load_ty(&self, store: &StoreOpaque) -> FuncType {
901 assert!(self.comes_from_same_store(store));
902 FuncType::from_shared_type_index(store.engine(), self.type_index(store.store_data()))
903 }
904
905 /// Does this function match the given type?
906 ///
907 /// That is, is this function's type a subtype of the given type?
908 ///
909 /// # Panics
910 ///
911 /// Panics if this function is not associated with the given store or if the
912 /// function type is not associated with the store's engine.
913 pub fn matches_ty(&self, store: impl AsContext, func_ty: &FuncType) -> bool {
914 self._matches_ty(store.as_context().0, func_ty)
915 }
916
917 pub(crate) fn _matches_ty(&self, store: &StoreOpaque, func_ty: &FuncType) -> bool {
918 let actual_ty = self.load_ty(store);
919 actual_ty.matches(func_ty)
920 }
921
922 pub(crate) fn ensure_matches_ty(&self, store: &StoreOpaque, func_ty: &FuncType) -> Result<()> {
923 if !self.comes_from_same_store(store) {
924 bail!("function used with wrong store");
925 }
926 if self._matches_ty(store, func_ty) {
927 Ok(())
928 } else {
929 let actual_ty = self.load_ty(store);
930 bail!("type mismatch: expected {func_ty}, found {actual_ty}")
931 }
932 }
933
934 /// Gets a reference to the `FuncType` for this function.
935 ///
936 /// Note that this returns both a reference to the type of this function as
937 /// well as a reference back to the store itself. This enables using the
938 /// `StoreOpaque` while the `FuncType` is also being used (from the
939 /// perspective of the borrow-checker) because otherwise the signature would
940 /// consider `StoreOpaque` borrowed mutable while `FuncType` is in use.
941 fn ty_ref<'a>(&self, store: &'a mut StoreOpaque) -> (&'a FuncType, &'a StoreOpaque) {
942 // If we haven't loaded our type into the store yet then do so lazily at
943 // this time.
944 if store.store_data()[self.0].ty.is_none() {
945 let ty = self.load_ty(store);
946 store.store_data_mut()[self.0].ty = Some(Box::new(ty));
947 }
948
949 (store.store_data()[self.0].ty.as_ref().unwrap(), store)
950 }
951
952 pub(crate) fn type_index(&self, data: &StoreData) -> VMSharedTypeIndex {
953 data[self.0].sig_index()
954 }
955
956 /// Invokes this function with the `params` given and writes returned values
957 /// to `results`.
958 ///
959 /// The `params` here must match the type signature of this `Func`, or an
960 /// error will occur. Additionally `results` must have the same
961 /// length as the number of results for this function. Calling this function
962 /// will synchronously execute the WebAssembly function referenced to get
963 /// the results.
964 ///
965 /// This function will return `Ok(())` if execution completed without a trap
966 /// or error of any kind. In this situation the results will be written to
967 /// the provided `results` array.
968 ///
969 /// # Errors
970 ///
971 /// Any error which occurs throughout the execution of the function will be
972 /// returned as `Err(e)`. The [`Error`](anyhow::Error) type can be inspected
973 /// for the precise error cause such as:
974 ///
975 /// * [`Trap`] - indicates that a wasm trap happened and execution was
976 /// halted.
977 /// * [`WasmBacktrace`] - optionally included on errors for backtrace
978 /// information of the trap/error.
979 /// * Other string-based errors to indicate issues such as type errors with
980 /// `params`.
981 /// * Any host-originating error originally returned from a function defined
982 /// via [`Func::new`], for example.
983 ///
984 /// Errors typically indicate that execution of WebAssembly was halted
985 /// mid-way and did not complete after the error condition happened.
986 ///
987 /// [`Trap`]: crate::Trap
988 ///
989 /// # Panics
990 ///
991 /// This function will panic if called on a function belonging to an async
992 /// store. Asynchronous stores must always use `call_async`. Also panics if
993 /// `store` does not own this function.
994 ///
995 /// [`WasmBacktrace`]: crate::WasmBacktrace
996 pub fn call(
997 &self,
998 mut store: impl AsContextMut,
999 params: &[Val],
1000 results: &mut [Val],
1001 ) -> Result<()> {
1002 assert!(
1003 !store.as_context().async_support(),
1004 "must use `call_async` when async support is enabled on the config",
1005 );
1006 let mut store = store.as_context_mut();
1007 let need_gc = self.call_impl_check_args(&mut store, params, results)?;
1008 if need_gc {
1009 store.0.gc();
1010 }
1011 unsafe { self.call_impl_do_call(&mut store, params, results) }
1012 }
1013
1014 /// Invokes this function in an "unchecked" fashion, reading parameters and
1015 /// writing results to `params_and_returns`.
1016 ///
1017 /// This function is the same as [`Func::call`] except that the arguments
1018 /// and results both use a different representation. If possible it's
1019 /// recommended to use [`Func::call`] if safety isn't necessary or to use
1020 /// [`Func::typed`] in conjunction with [`TypedFunc::call`] since that's
1021 /// both safer and faster than this method of invoking a function.
1022 ///
1023 /// Note that if this function takes `externref` arguments then it will
1024 /// **not** automatically GC unlike the [`Func::call`] and
1025 /// [`TypedFunc::call`] functions. This means that if this function is
1026 /// invoked many times with new `ExternRef` values and no other GC happens
1027 /// via any other means then no values will get collected.
1028 ///
1029 /// # Errors
1030 ///
1031 /// For more information about errors see the [`Func::call`] documentation.
1032 ///
1033 /// # Unsafety
1034 ///
1035 /// This function is unsafe because the `params_and_returns` argument is not
1036 /// validated at all. It must uphold invariants such as:
1037 ///
1038 /// * It's a valid pointer to an array
1039 /// * It has enough space to store all parameters
1040 /// * It has enough space to store all results (not at the same time as
1041 /// parameters)
1042 /// * Parameters are initially written to the array and have the correct
1043 /// types and such.
1044 /// * Reference types like `externref` and `funcref` are valid at the
1045 /// time of this call and for the `store` specified.
1046 ///
1047 /// These invariants are all upheld for you with [`Func::call`] and
1048 /// [`TypedFunc::call`].
1049 pub unsafe fn call_unchecked(
1050 &self,
1051 mut store: impl AsContextMut,
1052 params_and_returns: *mut ValRaw,
1053 params_and_returns_capacity: usize,
1054 ) -> Result<()> {
1055 let mut store = store.as_context_mut();
1056 let data = &store.0.store_data()[self.0];
1057 let func_ref = data.export().func_ref;
1058 Self::call_unchecked_raw(
1059 &mut store,
1060 func_ref,
1061 params_and_returns,
1062 params_and_returns_capacity,
1063 )
1064 }
1065
1066 pub(crate) unsafe fn call_unchecked_raw<T>(
1067 store: &mut StoreContextMut<'_, T>,
1068 func_ref: NonNull<VMFuncRef>,
1069 params_and_returns: *mut ValRaw,
1070 params_and_returns_capacity: usize,
1071 ) -> Result<()> {
1072 invoke_wasm_and_catch_traps(store, |caller| {
1073 let func_ref = func_ref.as_ref();
1074 (func_ref.array_call)(
1075 func_ref.vmctx,
1076 caller.cast::<VMOpaqueContext>(),
1077 params_and_returns,
1078 params_and_returns_capacity,
1079 )
1080 })
1081 }
1082
1083 /// Converts the raw representation of a `funcref` into an `Option<Func>`
1084 ///
1085 /// This is intended to be used in conjunction with [`Func::new_unchecked`],
1086 /// [`Func::call_unchecked`], and [`ValRaw`] with its `funcref` field.
1087 ///
1088 /// # Unsafety
1089 ///
1090 /// This function is not safe because `raw` is not validated at all. The
1091 /// caller must guarantee that `raw` is owned by the `store` provided and is
1092 /// valid within the `store`.
1093 pub unsafe fn from_raw(mut store: impl AsContextMut, raw: *mut c_void) -> Option<Func> {
1094 Self::_from_raw(store.as_context_mut().0, raw)
1095 }
1096
1097 pub(crate) unsafe fn _from_raw(store: &mut StoreOpaque, raw: *mut c_void) -> Option<Func> {
1098 Func::from_vm_func_ref(store, raw.cast())
1099 }
1100
1101 /// Extracts the raw value of this `Func`, which is owned by `store`.
1102 ///
1103 /// This function returns a value that's suitable for writing into the
1104 /// `funcref` field of the [`ValRaw`] structure.
1105 ///
1106 /// # Unsafety
1107 ///
1108 /// The returned value is only valid for as long as the store is alive and
1109 /// this function is properly rooted within it. Additionally this function
1110 /// should not be liberally used since it's a very low-level knob.
1111 pub unsafe fn to_raw(&self, mut store: impl AsContextMut) -> *mut c_void {
1112 self.vm_func_ref(store.as_context_mut().0).as_ptr().cast()
1113 }
1114
1115 /// Invokes this function with the `params` given, returning the results
1116 /// asynchronously.
1117 ///
1118 /// This function is the same as [`Func::call`] except that it is
1119 /// asynchronous. This is only compatible with stores associated with an
1120 /// [asynchronous config](crate::Config::async_support).
1121 ///
1122 /// It's important to note that the execution of WebAssembly will happen
1123 /// synchronously in the `poll` method of the future returned from this
1124 /// function. Wasmtime does not manage its own thread pool or similar to
1125 /// execute WebAssembly in. Future `poll` methods are generally expected to
1126 /// resolve quickly, so it's recommended that you run or poll this future
1127 /// in a "blocking context".
1128 ///
1129 /// For more information see the documentation on [asynchronous
1130 /// configs](crate::Config::async_support).
1131 ///
1132 /// # Errors
1133 ///
1134 /// For more information on errors see the [`Func::call`] documentation.
1135 ///
1136 /// # Panics
1137 ///
1138 /// Panics if this is called on a function in a synchronous store. This
1139 /// only works with functions defined within an asynchronous store. Also
1140 /// panics if `store` does not own this function.
1141 #[cfg(feature = "async")]
1142 pub async fn call_async<T>(
1143 &self,
1144 mut store: impl AsContextMut<Data = T>,
1145 params: &[Val],
1146 results: &mut [Val],
1147 ) -> Result<()>
1148 where
1149 T: Send,
1150 {
1151 let mut store = store.as_context_mut();
1152 assert!(
1153 store.0.async_support(),
1154 "cannot use `call_async` without enabling async support in the config",
1155 );
1156 let need_gc = self.call_impl_check_args(&mut store, params, results)?;
1157 if need_gc {
1158 store.0.gc_async().await;
1159 }
1160 let result = store
1161 .on_fiber(|store| unsafe { self.call_impl_do_call(store, params, results) })
1162 .await??;
1163 Ok(result)
1164 }
1165
1166 /// Perform dynamic checks that the arguments given to us match
1167 /// the signature of this function and are appropriate to pass to this
1168 /// function.
1169 ///
1170 /// This involves checking to make sure we have the right number and types
1171 /// of arguments as well as making sure everything is from the same `Store`.
1172 ///
1173 /// This must be called just before `call_impl_do_call`.
1174 ///
1175 /// Returns whether we need to GC before calling `call_impl_do_call`.
1176 fn call_impl_check_args<T>(
1177 &self,
1178 store: &mut StoreContextMut<'_, T>,
1179 params: &[Val],
1180 results: &mut [Val],
1181 ) -> Result<bool> {
1182 let (ty, opaque) = self.ty_ref(store.0);
1183 if ty.params().len() != params.len() {
1184 bail!(
1185 "expected {} arguments, got {}",
1186 ty.params().len(),
1187 params.len()
1188 );
1189 }
1190 if ty.results().len() != results.len() {
1191 bail!(
1192 "expected {} results, got {}",
1193 ty.results().len(),
1194 results.len()
1195 );
1196 }
1197 for (ty, arg) in ty.params().zip(params) {
1198 arg.ensure_matches_ty(opaque, &ty)
1199 .context("argument type mismatch")?;
1200 if !arg.comes_from_same_store(opaque) {
1201 bail!("cross-`Store` values are not currently supported");
1202 }
1203 }
1204
1205 #[cfg(feature = "gc")]
1206 {
1207 // Check whether we need to GC before calling into Wasm.
1208 //
1209 // For example, with the DRC collector, whenever we pass GC refs
1210 // from host code to Wasm code, they go into the
1211 // `VMGcRefActivationsTable`. But the table might be at capacity
1212 // already. If it is at capacity (unlikely) then we need to do a GC
1213 // to free up space.
1214 let num_gc_refs = ty.as_wasm_func_type().non_i31_gc_ref_params_count();
1215 if let Some(num_gc_refs) = NonZeroUsize::new(num_gc_refs) {
1216 return Ok(opaque
1217 .gc_store()?
1218 .gc_heap
1219 .need_gc_before_entering_wasm(num_gc_refs));
1220 }
1221 }
1222
1223 Ok(false)
1224 }
1225
1226 /// Do the actual call into Wasm.
1227 ///
1228 /// # Safety
1229 ///
1230 /// You must have type checked the arguments by calling
1231 /// `call_impl_check_args` immediately before calling this function. It is
1232 /// only safe to call this function if that one did not return an error.
1233 unsafe fn call_impl_do_call<T>(
1234 &self,
1235 store: &mut StoreContextMut<'_, T>,
1236 params: &[Val],
1237 results: &mut [Val],
1238 ) -> Result<()> {
1239 // Store the argument values into `values_vec`.
1240 let (ty, _) = self.ty_ref(store.0);
1241 let values_vec_size = params.len().max(ty.results().len());
1242 let mut values_vec = store.0.take_wasm_val_raw_storage();
1243 debug_assert!(values_vec.is_empty());
1244 values_vec.resize_with(values_vec_size, || ValRaw::v128(0));
1245 for (arg, slot) in params.iter().cloned().zip(&mut values_vec) {
1246 unsafe {
1247 *slot = arg.to_raw(&mut *store)?;
1248 }
1249 }
1250
1251 unsafe {
1252 self.call_unchecked(&mut *store, values_vec.as_mut_ptr(), values_vec_size)?;
1253 }
1254
1255 for ((i, slot), val) in results.iter_mut().enumerate().zip(&values_vec) {
1256 let ty = self.ty_ref(store.0).0.results().nth(i).unwrap();
1257 *slot = unsafe { Val::from_raw(&mut *store, *val, ty) };
1258 }
1259 values_vec.truncate(0);
1260 store.0.save_wasm_val_raw_storage(values_vec);
1261 Ok(())
1262 }
1263
1264 #[inline]
1265 pub(crate) fn vm_func_ref(&self, store: &mut StoreOpaque) -> NonNull<VMFuncRef> {
1266 let func_data = &mut store.store_data_mut()[self.0];
1267 let func_ref = func_data.export().func_ref;
1268 if unsafe { func_ref.as_ref().wasm_call.is_some() } {
1269 return func_ref;
1270 }
1271
1272 if let Some(in_store) = func_data.in_store_func_ref {
1273 in_store.as_non_null()
1274 } else {
1275 unsafe {
1276 // Move this uncommon/slow path out of line.
1277 self.copy_func_ref_into_store_and_fill(store, func_ref)
1278 }
1279 }
1280 }
1281
1282 unsafe fn copy_func_ref_into_store_and_fill(
1283 &self,
1284 store: &mut StoreOpaque,
1285 func_ref: NonNull<VMFuncRef>,
1286 ) -> NonNull<VMFuncRef> {
1287 let func_ref = store.func_refs().push(func_ref.as_ref().clone());
1288 store.store_data_mut()[self.0].in_store_func_ref = Some(SendSyncPtr::new(func_ref));
1289 store.fill_func_refs();
1290 func_ref
1291 }
1292
1293 pub(crate) unsafe fn from_wasmtime_function(
1294 export: ExportFunction,
1295 store: &mut StoreOpaque,
1296 ) -> Self {
1297 Func::from_func_kind(FuncKind::StoreOwned { export }, store)
1298 }
1299
1300 fn from_func_kind(kind: FuncKind, store: &mut StoreOpaque) -> Self {
1301 Func(store.store_data_mut().insert(FuncData {
1302 kind,
1303 in_store_func_ref: None,
1304 ty: None,
1305 }))
1306 }
1307
1308 pub(crate) fn vmimport(&self, store: &mut StoreOpaque, module: &Module) -> VMFunctionImport {
1309 unsafe {
1310 let f = {
1311 let func_data = &mut store.store_data_mut()[self.0];
1312 // If we already patched this `funcref.wasm_call` and saved a
1313 // copy in the store, use the patched version. Otherwise, use
1314 // the potentially un-patched version.
1315 if let Some(func_ref) = func_data.in_store_func_ref {
1316 func_ref.as_non_null()
1317 } else {
1318 func_data.export().func_ref
1319 }
1320 };
1321 VMFunctionImport {
1322 wasm_call: if let Some(wasm_call) = f.as_ref().wasm_call {
1323 wasm_call
1324 } else {
1325 // Assert that this is a array-call function, since those
1326 // are the only ones that could be missing a `wasm_call`
1327 // trampoline.
1328 let _ = VMArrayCallHostFuncContext::from_opaque(f.as_ref().vmctx);
1329
1330 let sig = self.type_index(store.store_data());
1331 module.wasm_to_array_trampoline(sig).expect(
1332 "if the wasm is importing a function of a given type, it must have the \
1333 type's trampoline",
1334 )
1335 },
1336 array_call: f.as_ref().array_call,
1337 vmctx: f.as_ref().vmctx,
1338 }
1339 }
1340 }
1341
1342 pub(crate) fn comes_from_same_store(&self, store: &StoreOpaque) -> bool {
1343 store.store_data().contains(self.0)
1344 }
1345
1346 fn invoke_host_func_for_wasm<T>(
1347 mut caller: Caller<'_, T>,
1348 ty: &FuncType,
1349 values_vec: &mut [ValRaw],
1350 func: &dyn Fn(Caller<'_, T>, &[Val], &mut [Val]) -> Result<()>,
1351 ) -> Result<()> {
1352 // Translate the raw JIT arguments in `values_vec` into a `Val` which
1353 // we'll be passing as a slice. The storage for our slice-of-`Val` we'll
1354 // be taking from the `Store`. We preserve our slice back into the
1355 // `Store` after the hostcall, ideally amortizing the cost of allocating
1356 // the storage across wasm->host calls.
1357 //
1358 // Note that we have a dynamic guarantee that `values_vec` is the
1359 // appropriate length to both read all arguments from as well as store
1360 // all results into.
1361 let mut val_vec = caller.store.0.take_hostcall_val_storage();
1362 debug_assert!(val_vec.is_empty());
1363 let nparams = ty.params().len();
1364 val_vec.reserve(nparams + ty.results().len());
1365 for (i, ty) in ty.params().enumerate() {
1366 val_vec.push(unsafe { Val::from_raw(&mut caller.store, values_vec[i], ty) })
1367 }
1368
1369 val_vec.extend((0..ty.results().len()).map(|_| Val::null_func_ref()));
1370 let (params, results) = val_vec.split_at_mut(nparams);
1371 func(caller.sub_caller(), params, results)?;
1372
1373 // Unlike our arguments we need to dynamically check that the return
1374 // values produced are correct. There could be a bug in `func` that
1375 // produces the wrong number, wrong types, or wrong stores of
1376 // values, and we need to catch that here.
1377 for (i, (ret, ty)) in results.iter().zip(ty.results()).enumerate() {
1378 ret.ensure_matches_ty(caller.store.0, &ty)
1379 .context("function attempted to return an incompatible value")?;
1380 unsafe {
1381 values_vec[i] = ret.to_raw(&mut caller.store)?;
1382 }
1383 }
1384
1385 // Restore our `val_vec` back into the store so it's usable for the next
1386 // hostcall to reuse our own storage.
1387 val_vec.truncate(0);
1388 caller.store.0.save_hostcall_val_storage(val_vec);
1389 Ok(())
1390 }
1391
1392 /// Attempts to extract a typed object from this `Func` through which the
1393 /// function can be called.
1394 ///
1395 /// This function serves as an alternative to [`Func::call`] and
1396 /// [`Func::call_async`]. This method performs a static type check (using
1397 /// the `Params` and `Results` type parameters on the underlying wasm
1398 /// function. If the type check passes then a `TypedFunc` object is returned,
1399 /// otherwise an error is returned describing the typecheck failure.
1400 ///
1401 /// The purpose of this relative to [`Func::call`] is that it's much more
1402 /// efficient when used to invoke WebAssembly functions. With the types
1403 /// statically known far less setup/teardown is required when invoking
1404 /// WebAssembly. If speed is desired then this function is recommended to be
1405 /// used instead of [`Func::call`] (which is more general, hence its
1406 /// slowdown).
1407 ///
1408 /// The `Params` type parameter is used to describe the parameters of the
1409 /// WebAssembly function. This can either be a single type (like `i32`), or
1410 /// a tuple of types representing the list of parameters (like `(i32, f32,
1411 /// f64)`). Additionally you can use `()` to represent that the function has
1412 /// no parameters.
1413 ///
1414 /// The `Results` type parameter is used to describe the results of the
1415 /// function. This behaves the same way as `Params`, but just for the
1416 /// results of the function.
1417 ///
1418 /// # Translating Between WebAssembly and Rust Types
1419 ///
1420 /// Translation between Rust types and WebAssembly types looks like:
1421 ///
1422 /// | WebAssembly | Rust |
1423 /// |-------------------------------------------|---------------------------------------|
1424 /// | `i32` | `i32` or `u32` |
1425 /// | `i64` | `i64` or `u64` |
1426 /// | `f32` | `f32` |
1427 /// | `f64` | `f64` |
1428 /// | `externref` aka `(ref null extern)` | `Option<ExternRef>` |
1429 /// | `(ref extern)` | `ExternRef` |
1430 /// | `(ref noextern)` | `NoExtern` |
1431 /// | `nullexternref` aka `(ref null noextern)` | `Option<NoExtern>` |
1432 /// | `anyref` aka `(ref null any)` | `Option<AnyRef>` |
1433 /// | `(ref any)` | `AnyRef` |
1434 /// | `i31ref` aka `(ref null i31)` | `Option<I31>` |
1435 /// | `(ref i31)` | `I31` |
1436 /// | `structref` aka `(ref null struct)` | `Option<Struct>` |
1437 /// | `(ref struct)` | `Struct` |
1438 /// | `arrayref` aka `(ref null array)` | `Option<Array>` |
1439 /// | `(ref array)` | `Array` |
1440 /// | `funcref` aka `(ref null func)` | `Option<Func>` |
1441 /// | `(ref func)` | `Func` |
1442 /// | `(ref null <func type index>)` | `Option<Func>` |
1443 /// | `(ref <func type index>)` | `Func` |
1444 /// | `nullfuncref` aka `(ref null nofunc)` | `Option<NoFunc>` |
1445 /// | `(ref nofunc)` | `NoFunc` |
1446 /// | `v128` | `V128` on `x86-64` and `aarch64` only |
1447 ///
1448 /// (Note that this mapping is the same as that of [`Func::wrap`]).
1449 ///
1450 /// Note that once the [`TypedFunc`] return value is acquired you'll use either
1451 /// [`TypedFunc::call`] or [`TypedFunc::call_async`] as necessary to actually invoke
1452 /// the function. This method does not invoke any WebAssembly code, it
1453 /// simply performs a typecheck before returning the [`TypedFunc`] value.
1454 ///
1455 /// This method also has a convenience wrapper as
1456 /// [`Instance::get_typed_func`](crate::Instance::get_typed_func) to
1457 /// directly get a typed function value from an
1458 /// [`Instance`](crate::Instance).
1459 ///
1460 /// ## Subtyping
1461 ///
1462 /// For result types, you can always use a supertype of the WebAssembly
1463 /// function's actual declared result type. For example, if the WebAssembly
1464 /// function was declared with type `(func (result nullfuncref))` you could
1465 /// successfully call `f.typed::<(), Option<Func>>()` because `Option<Func>`
1466 /// corresponds to `funcref`, which is a supertype of `nullfuncref`.
1467 ///
1468 /// For parameter types, you can always use a subtype of the WebAssembly
1469 /// function's actual declared parameter type. For example, if the
1470 /// WebAssembly function was declared with type `(func (param (ref null
1471 /// func)))` you could successfully call `f.typed::<Func, ()>()` because
1472 /// `Func` corresponds to `(ref func)`, which is a subtype of `(ref null
1473 /// func)`.
1474 ///
1475 /// Additionally, for functions which take a reference to a concrete type as
1476 /// a parameter, you can also use the concrete type's supertype. Consider a
1477 /// WebAssembly function that takes a reference to a function with a
1478 /// concrete type: `(ref null <func type index>)`. In this scenario, there
1479 /// is no static `wasmtime::Foo` Rust type that corresponds to that
1480 /// particular Wasm-defined concrete reference type because Wasm modules are
1481 /// loaded dynamically at runtime. You *could* do `f.typed::<Option<NoFunc>,
1482 /// ()>()`, and while that is correctly typed and valid, it is often overly
1483 /// restrictive. The only value you could call the resulting typed function
1484 /// with is the null function reference, but we'd like to call it with
1485 /// non-null function references that happen to be of the correct
1486 /// type. Therefore, `f.typed<Option<Func>, ()>()` is also allowed in this
1487 /// case, even though `Option<Func>` represents `(ref null func)` which is
1488 /// the supertype, not subtype, of `(ref null <func type index>)`. This does
1489 /// imply some minimal dynamic type checks in this case, but it is supported
1490 /// for better ergonomics, to enable passing non-null references into the
1491 /// function.
1492 ///
1493 /// # Errors
1494 ///
1495 /// This function will return an error if `Params` or `Results` does not
1496 /// match the native type of this WebAssembly function.
1497 ///
1498 /// # Panics
1499 ///
1500 /// This method will panic if `store` does not own this function.
1501 ///
1502 /// # Examples
1503 ///
1504 /// An end-to-end example of calling a function which takes no parameters
1505 /// and has no results:
1506 ///
1507 /// ```
1508 /// # use wasmtime::*;
1509 /// # fn main() -> anyhow::Result<()> {
1510 /// let engine = Engine::default();
1511 /// let mut store = Store::new(&engine, ());
1512 /// let module = Module::new(&engine, r#"(module (func (export "foo")))"#)?;
1513 /// let instance = Instance::new(&mut store, &module, &[])?;
1514 /// let foo = instance.get_func(&mut store, "foo").expect("export wasn't a function");
1515 ///
1516 /// // Note that this call can fail due to the typecheck not passing, but
1517 /// // in our case we statically know the module so we know this should
1518 /// // pass.
1519 /// let typed = foo.typed::<(), ()>(&store)?;
1520 ///
1521 /// // Note that this can fail if the wasm traps at runtime.
1522 /// typed.call(&mut store, ())?;
1523 /// # Ok(())
1524 /// # }
1525 /// ```
1526 ///
1527 /// You can also pass in multiple parameters and get a result back
1528 ///
1529 /// ```
1530 /// # use wasmtime::*;
1531 /// # fn foo(add: &Func, mut store: Store<()>) -> anyhow::Result<()> {
1532 /// let typed = add.typed::<(i32, i64), f32>(&store)?;
1533 /// assert_eq!(typed.call(&mut store, (1, 2))?, 3.0);
1534 /// # Ok(())
1535 /// # }
1536 /// ```
1537 ///
1538 /// and similarly if a function has multiple results you can bind that too
1539 ///
1540 /// ```
1541 /// # use wasmtime::*;
1542 /// # fn foo(add_with_overflow: &Func, mut store: Store<()>) -> anyhow::Result<()> {
1543 /// let typed = add_with_overflow.typed::<(u32, u32), (u32, i32)>(&store)?;
1544 /// let (result, overflow) = typed.call(&mut store, (u32::max_value(), 2))?;
1545 /// assert_eq!(result, 1);
1546 /// assert_eq!(overflow, 1);
1547 /// # Ok(())
1548 /// # }
1549 /// ```
1550 pub fn typed<Params, Results>(
1551 &self,
1552 store: impl AsContext,
1553 ) -> Result<TypedFunc<Params, Results>>
1554 where
1555 Params: WasmParams,
1556 Results: WasmResults,
1557 {
1558 // Type-check that the params/results are all valid
1559 let store = store.as_context().0;
1560 let ty = self.load_ty(store);
1561 Params::typecheck(store.engine(), ty.params(), TypeCheckPosition::Param)
1562 .context("type mismatch with parameters")?;
1563 Results::typecheck(store.engine(), ty.results(), TypeCheckPosition::Result)
1564 .context("type mismatch with results")?;
1565
1566 // and then we can construct the typed version of this function
1567 // (unsafely), which should be safe since we just did the type check above.
1568 unsafe { Ok(TypedFunc::_new_unchecked(store, *self)) }
1569 }
1570
1571 /// Get a stable hash key for this function.
1572 ///
1573 /// Even if the same underlying function is added to the `StoreData`
1574 /// multiple times and becomes multiple `wasmtime::Func`s, this hash key
1575 /// will be consistent across all of these functions.
1576 #[allow(dead_code)] // Not used yet, but added for consistency.
1577 pub(crate) fn hash_key(&self, store: &mut StoreOpaque) -> impl core::hash::Hash + Eq {
1578 self.vm_func_ref(store).as_ptr() as usize
1579 }
1580}
1581
1582/// Prepares for entrance into WebAssembly.
1583///
1584/// This function will set up context such that `closure` is allowed to call a
1585/// raw trampoline or a raw WebAssembly function. This *must* be called to do
1586/// things like catch traps and set up GC properly.
1587///
1588/// The `closure` provided receives a default "caller" `VMContext` parameter it
1589/// can pass to the called wasm function, if desired.
1590pub(crate) fn invoke_wasm_and_catch_traps<T>(
1591 store: &mut StoreContextMut<'_, T>,
1592 closure: impl FnMut(*mut VMContext),
1593) -> Result<()> {
1594 unsafe {
1595 let exit = enter_wasm(store);
1596
1597 if let Err(trap) = store.0.call_hook(CallHook::CallingWasm) {
1598 exit_wasm(store, exit);
1599 return Err(trap);
1600 }
1601 let result = crate::runtime::vm::catch_traps(
1602 store.0.signal_handler(),
1603 store.0.engine().config().wasm_backtrace,
1604 store.0.engine().config().coredump_on_trap,
1605 store.0.default_caller(),
1606 closure,
1607 );
1608 exit_wasm(store, exit);
1609 store.0.call_hook(CallHook::ReturningFromWasm)?;
1610 result.map_err(|t| crate::trap::from_runtime_box(store.0, t))
1611 }
1612}
1613
1614/// This function is called to register state within `Store` whenever
1615/// WebAssembly is entered within the `Store`.
1616///
1617/// This function sets up various limits such as:
1618///
1619/// * The stack limit. This is what ensures that we limit the stack space
1620/// allocated by WebAssembly code and it's relative to the initial stack
1621/// pointer that called into wasm.
1622///
1623/// This function may fail if the stack limit can't be set because an
1624/// interrupt already happened.
1625fn enter_wasm<T>(store: &mut StoreContextMut<'_, T>) -> Option<usize> {
1626 // If this is a recursive call, e.g. our stack limit is already set, then
1627 // we may be able to skip this function.
1628 //
1629 // For synchronous stores there's nothing else to do because all wasm calls
1630 // happen synchronously and on the same stack. This means that the previous
1631 // stack limit will suffice for the next recursive call.
1632 //
1633 // For asynchronous stores then each call happens on a separate native
1634 // stack. This means that the previous stack limit is no longer relevant
1635 // because we're on a separate stack.
1636 if unsafe { *store.0.runtime_limits().stack_limit.get() } != usize::MAX
1637 && !store.0.async_support()
1638 {
1639 return None;
1640 }
1641
1642 // Ignore this stack pointer business on miri since we can't execute wasm
1643 // anyway and the concept of a stack pointer on miri is a bit nebulous
1644 // regardless.
1645 if cfg!(miri) {
1646 return None;
1647 }
1648
1649 let stack_pointer = crate::runtime::vm::get_stack_pointer();
1650
1651 // Determine the stack pointer where, after which, any wasm code will
1652 // immediately trap. This is checked on the entry to all wasm functions.
1653 //
1654 // Note that this isn't 100% precise. We are requested to give wasm
1655 // `max_wasm_stack` bytes, but what we're actually doing is giving wasm
1656 // probably a little less than `max_wasm_stack` because we're
1657 // calculating the limit relative to this function's approximate stack
1658 // pointer. Wasm will be executed on a frame beneath this one (or next
1659 // to it). In any case it's expected to be at most a few hundred bytes
1660 // of slop one way or another. When wasm is typically given a MB or so
1661 // (a million bytes) the slop shouldn't matter too much.
1662 //
1663 // After we've got the stack limit then we store it into the `stack_limit`
1664 // variable.
1665 let wasm_stack_limit = stack_pointer - store.engine().config().max_wasm_stack;
1666 let prev_stack = unsafe {
1667 mem::replace(
1668 &mut *store.0.runtime_limits().stack_limit.get(),
1669 wasm_stack_limit,
1670 )
1671 };
1672
1673 Some(prev_stack)
1674}
1675
1676fn exit_wasm<T>(store: &mut StoreContextMut<'_, T>, prev_stack: Option<usize>) {
1677 // If we don't have a previous stack pointer to restore, then there's no
1678 // cleanup we need to perform here.
1679 let prev_stack = match prev_stack {
1680 Some(stack) => stack,
1681 None => return,
1682 };
1683
1684 unsafe {
1685 *store.0.runtime_limits().stack_limit.get() = prev_stack;
1686 }
1687}
1688
1689/// A trait implemented for types which can be returned from closures passed to
1690/// [`Func::wrap`] and friends.
1691///
1692/// This trait should not be implemented by user types. This trait may change at
1693/// any time internally. The types which implement this trait, however, are
1694/// stable over time.
1695///
1696/// For more information see [`Func::wrap`]
1697pub unsafe trait WasmRet {
1698 // Same as `WasmTy::compatible_with_store`.
1699 #[doc(hidden)]
1700 fn compatible_with_store(&self, store: &StoreOpaque) -> bool;
1701
1702 /// Stores this return value into the `ptr` specified using the rooted
1703 /// `store`.
1704 ///
1705 /// Traps are communicated through the `Result<_>` return value.
1706 ///
1707 /// # Unsafety
1708 ///
1709 /// This method is unsafe as `ptr` must have the correct length to store
1710 /// this result. This property is only checked in debug mode, not in release
1711 /// mode.
1712 #[doc(hidden)]
1713 unsafe fn store(
1714 self,
1715 store: &mut AutoAssertNoGc<'_>,
1716 ptr: &mut [MaybeUninit<ValRaw>],
1717 ) -> Result<()>;
1718
1719 #[doc(hidden)]
1720 fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType;
1721 #[doc(hidden)]
1722 fn may_gc() -> bool;
1723
1724 // Utilities used to convert an instance of this type to a `Result`
1725 // explicitly, used when wrapping async functions which always bottom-out
1726 // in a function that returns a trap because futures can be cancelled.
1727 #[doc(hidden)]
1728 type Fallible: WasmRet;
1729 #[doc(hidden)]
1730 fn into_fallible(self) -> Self::Fallible;
1731 #[doc(hidden)]
1732 fn fallible_from_error(error: Error) -> Self::Fallible;
1733}
1734
1735unsafe impl<T> WasmRet for T
1736where
1737 T: WasmTy,
1738{
1739 type Fallible = Result<T>;
1740
1741 fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
1742 <Self as WasmTy>::compatible_with_store(self, store)
1743 }
1744
1745 unsafe fn store(
1746 self,
1747 store: &mut AutoAssertNoGc<'_>,
1748 ptr: &mut [MaybeUninit<ValRaw>],
1749 ) -> Result<()> {
1750 debug_assert!(ptr.len() > 0);
1751 <Self as WasmTy>::store(self, store, ptr.get_unchecked_mut(0))
1752 }
1753
1754 fn may_gc() -> bool {
1755 T::may_gc()
1756 }
1757
1758 fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType {
1759 FuncType::new(engine, params, Some(<Self as WasmTy>::valtype()))
1760 }
1761
1762 fn into_fallible(self) -> Result<T> {
1763 Ok(self)
1764 }
1765
1766 fn fallible_from_error(error: Error) -> Result<T> {
1767 Err(error)
1768 }
1769}
1770
1771unsafe impl<T> WasmRet for Result<T>
1772where
1773 T: WasmRet,
1774{
1775 type Fallible = Self;
1776
1777 fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
1778 match self {
1779 Ok(x) => <T as WasmRet>::compatible_with_store(x, store),
1780 Err(_) => true,
1781 }
1782 }
1783
1784 unsafe fn store(
1785 self,
1786 store: &mut AutoAssertNoGc<'_>,
1787 ptr: &mut [MaybeUninit<ValRaw>],
1788 ) -> Result<()> {
1789 self.and_then(|val| val.store(store, ptr))
1790 }
1791
1792 fn may_gc() -> bool {
1793 T::may_gc()
1794 }
1795
1796 fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType {
1797 T::func_type(engine, params)
1798 }
1799
1800 fn into_fallible(self) -> Result<T> {
1801 self
1802 }
1803
1804 fn fallible_from_error(error: Error) -> Result<T> {
1805 Err(error)
1806 }
1807}
1808
1809macro_rules! impl_wasm_host_results {
1810 ($n:tt $($t:ident)*) => (
1811 #[allow(non_snake_case)]
1812 unsafe impl<$($t),*> WasmRet for ($($t,)*)
1813 where
1814 $($t: WasmTy,)*
1815 {
1816 type Fallible = Result<Self>;
1817
1818 #[inline]
1819 fn compatible_with_store(&self, _store: &StoreOpaque) -> bool {
1820 let ($($t,)*) = self;
1821 $( $t.compatible_with_store(_store) && )* true
1822 }
1823
1824 #[inline]
1825 unsafe fn store(
1826 self,
1827 _store: &mut AutoAssertNoGc<'_>,
1828 _ptr: &mut [MaybeUninit<ValRaw>],
1829 ) -> Result<()> {
1830 let ($($t,)*) = self;
1831 let mut _cur = 0;
1832 $(
1833 debug_assert!(_cur < _ptr.len());
1834 let val = _ptr.get_unchecked_mut(_cur);
1835 _cur += 1;
1836 WasmTy::store($t, _store, val)?;
1837 )*
1838 Ok(())
1839 }
1840
1841 #[doc(hidden)]
1842 fn may_gc() -> bool {
1843 $( $t::may_gc() || )* false
1844 }
1845
1846 fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType {
1847 FuncType::new(
1848 engine,
1849 params,
1850 IntoIterator::into_iter([$($t::valtype(),)*]),
1851 )
1852 }
1853
1854 #[inline]
1855 fn into_fallible(self) -> Result<Self> {
1856 Ok(self)
1857 }
1858
1859 #[inline]
1860 fn fallible_from_error(error: Error) -> Result<Self> {
1861 Err(error)
1862 }
1863 }
1864 )
1865}
1866
1867for_each_function_signature!(impl_wasm_host_results);
1868
1869/// Internal trait implemented for all arguments that can be passed to
1870/// [`Func::wrap`] and [`Linker::func_wrap`](crate::Linker::func_wrap).
1871///
1872/// This trait should not be implemented by external users, it's only intended
1873/// as an implementation detail of this crate.
1874pub trait IntoFunc<T, Params, Results>: Send + Sync + 'static {
1875 /// Convert this function into a `VM{Array,Native}CallHostFuncContext` and
1876 /// internal `VMFuncRef`.
1877 #[doc(hidden)]
1878 fn into_func(self, engine: &Engine) -> HostContext;
1879}
1880
1881macro_rules! impl_into_func {
1882 ($num:tt $arg:ident) => {
1883 // Implement for functions without a leading `&Caller` parameter,
1884 // delegating to the implementation below which does have the leading
1885 // `Caller` parameter.
1886 #[allow(non_snake_case)]
1887 impl<T, F, $arg, R> IntoFunc<T, $arg, R> for F
1888 where
1889 F: Fn($arg) -> R + Send + Sync + 'static,
1890 $arg: WasmTy,
1891 R: WasmRet,
1892 {
1893 fn into_func(self, engine: &Engine) -> HostContext {
1894 let f = move |_: Caller<'_, T>, $arg: $arg| {
1895 self($arg)
1896 };
1897
1898 f.into_func(engine)
1899 }
1900 }
1901
1902 #[allow(non_snake_case)]
1903 impl<T, F, $arg, R> IntoFunc<T, (Caller<'_, T>, $arg), R> for F
1904 where
1905 F: Fn(Caller<'_, T>, $arg) -> R + Send + Sync + 'static,
1906 $arg: WasmTy,
1907 R: WasmRet,
1908 {
1909 fn into_func(self, engine: &Engine) -> HostContext {
1910 HostContext::from_closure(engine, move |caller: Caller<'_, T>, ($arg,)| {
1911 self(caller, $arg)
1912 })
1913 }
1914 }
1915 };
1916 ($num:tt $($args:ident)*) => {
1917 // Implement for functions without a leading `&Caller` parameter,
1918 // delegating to the implementation below which does have the leading
1919 // `Caller` parameter.
1920 #[allow(non_snake_case)]
1921 impl<T, F, $($args,)* R> IntoFunc<T, ($($args,)*), R> for F
1922 where
1923 F: Fn($($args),*) -> R + Send + Sync + 'static,
1924 $($args: WasmTy,)*
1925 R: WasmRet,
1926 {
1927 fn into_func(self, engine: &Engine) -> HostContext {
1928 let f = move |_: Caller<'_, T>, $($args:$args),*| {
1929 self($($args),*)
1930 };
1931
1932 f.into_func(engine)
1933 }
1934 }
1935
1936 #[allow(non_snake_case)]
1937 impl<T, F, $($args,)* R> IntoFunc<T, (Caller<'_, T>, $($args,)*), R> for F
1938 where
1939 F: Fn(Caller<'_, T>, $($args),*) -> R + Send + Sync + 'static,
1940 $($args: WasmTy,)*
1941 R: WasmRet,
1942 {
1943 fn into_func(self, engine: &Engine) -> HostContext {
1944 HostContext::from_closure(engine, move |caller: Caller<'_, T>, ( $( $args ),* )| {
1945 self(caller, $( $args ),* )
1946 })
1947 }
1948 }
1949 }
1950}
1951
1952for_each_function_signature!(impl_into_func);
1953
1954/// Trait implemented for various tuples made up of types which implement
1955/// [`WasmTy`] that can be passed to [`Func::wrap_inner`] and
1956/// [`HostContext::from_closure`].
1957pub unsafe trait WasmTyList {
1958 /// Get the value type that each Type in the list represents.
1959 fn valtypes() -> impl Iterator<Item = ValType>;
1960
1961 // Load a version of `Self` from the `values` provided.
1962 //
1963 // # Safety
1964 //
1965 // This function is unsafe as it's up to the caller to ensure that `values` are
1966 // valid for this given type.
1967 #[doc(hidden)]
1968 unsafe fn load(store: &mut AutoAssertNoGc<'_>, values: &mut [MaybeUninit<ValRaw>]) -> Self;
1969
1970 #[doc(hidden)]
1971 fn may_gc() -> bool;
1972}
1973
1974macro_rules! impl_wasm_ty_list {
1975 ($num:tt $($args:ident)*) => (paste::paste!{
1976 #[allow(non_snake_case)]
1977 unsafe impl<$($args),*> WasmTyList for ($($args,)*)
1978 where
1979 $($args: WasmTy,)*
1980 {
1981 fn valtypes() -> impl Iterator<Item = ValType> {
1982 IntoIterator::into_iter([$($args::valtype(),)*])
1983 }
1984
1985 unsafe fn load(_store: &mut AutoAssertNoGc<'_>, _values: &mut [MaybeUninit<ValRaw>]) -> Self {
1986 let mut _cur = 0;
1987 ($({
1988 debug_assert!(_cur < _values.len());
1989 let ptr = _values.get_unchecked(_cur).assume_init_ref();
1990 _cur += 1;
1991 $args::load(_store, ptr)
1992 },)*)
1993 }
1994
1995 fn may_gc() -> bool {
1996 $( $args::may_gc() || )* false
1997 }
1998 }
1999 });
2000}
2001
2002for_each_function_signature!(impl_wasm_ty_list);
2003
2004/// A structure representing the caller's context when creating a function
2005/// via [`Func::wrap`].
2006///
2007/// This structure can be taken as the first parameter of a closure passed to
2008/// [`Func::wrap`] or other constructors, and serves two purposes:
2009///
2010/// * First consumers can use [`Caller<'_, T>`](crate::Caller) to get access to
2011/// [`StoreContextMut<'_, T>`](crate::StoreContextMut) and/or get access to
2012/// `T` itself. This means that the [`Caller`] type can serve as a proxy to
2013/// the original [`Store`](crate::Store) itself and is used to satisfy
2014/// [`AsContext`] and [`AsContextMut`] bounds.
2015///
2016/// * Second a [`Caller`] can be used as the name implies, learning about the
2017/// caller's context, namely it's exported memory and exported functions. This
2018/// allows functions which take pointers as arguments to easily read the
2019/// memory the pointers point into, or if a function is expected to call
2020/// malloc in the wasm module to reserve space for the output you can do that.
2021///
2022/// Host functions which want access to [`Store`](crate::Store)-level state are
2023/// recommended to use this type.
2024pub struct Caller<'a, T> {
2025 pub(crate) store: StoreContextMut<'a, T>,
2026 caller: &'a crate::runtime::vm::Instance,
2027}
2028
2029impl<T> Caller<'_, T> {
2030 unsafe fn with<F, R>(caller: *mut VMContext, f: F) -> R
2031 where
2032 // The closure must be valid for any `Caller` it is given; it doesn't
2033 // get to choose the `Caller`'s lifetime.
2034 F: for<'a> FnOnce(Caller<'a, T>) -> R,
2035 // And the return value must not borrow from the caller/store.
2036 R: 'static,
2037 {
2038 debug_assert!(!caller.is_null());
2039 crate::runtime::vm::Instance::from_vmctx(caller, |instance| {
2040 let store = StoreContextMut::from_raw(instance.store());
2041 let gc_lifo_scope = store.0.gc_roots().enter_lifo_scope();
2042
2043 let ret = f(Caller {
2044 store,
2045 caller: &instance,
2046 });
2047
2048 // Safe to recreate a mutable borrow of the store because `ret`
2049 // cannot be borrowing from the store.
2050 let store = StoreContextMut::<T>::from_raw(instance.store());
2051 store.0.exit_gc_lifo_scope(gc_lifo_scope);
2052
2053 ret
2054 })
2055 }
2056
2057 fn sub_caller(&mut self) -> Caller<'_, T> {
2058 Caller {
2059 store: self.store.as_context_mut(),
2060 caller: self.caller,
2061 }
2062 }
2063
2064 /// Looks up an export from the caller's module by the `name` given.
2065 ///
2066 /// This is a low-level function that's typically used to implement passing
2067 /// of pointers or indices between core Wasm instances, where the callee
2068 /// needs to consult the caller's exports to perform memory management and
2069 /// resolve the references.
2070 ///
2071 /// For comparison, in components, the component model handles translating
2072 /// arguments from one component instance to another and managing memory, so
2073 /// that callees don't need to be aware of their callers, which promotes
2074 /// virtualizability of APIs.
2075 ///
2076 /// # Return
2077 ///
2078 /// If an export with the `name` provided was found, then it is returned as an
2079 /// `Extern`. There are a number of situations, however, where the export may not
2080 /// be available:
2081 ///
2082 /// * The caller instance may not have an export named `name`
2083 /// * There may not be a caller available, for example if `Func` was called
2084 /// directly from host code.
2085 ///
2086 /// It's recommended to take care when calling this API and gracefully
2087 /// handling a `None` return value.
2088 pub fn get_export(&mut self, name: &str) -> Option<Extern> {
2089 // All instances created have a `host_state` with a pointer pointing
2090 // back to themselves. If this caller doesn't have that `host_state`
2091 // then it probably means it was a host-created object like `Func::new`
2092 // which doesn't have any exports we want to return anyway.
2093 self.caller
2094 .host_state()
2095 .downcast_ref::<Instance>()?
2096 .get_export(&mut self.store, name)
2097 }
2098
2099 /// Access the underlying data owned by this `Store`.
2100 ///
2101 /// Same as [`Store::data`](crate::Store::data)
2102 pub fn data(&self) -> &T {
2103 self.store.data()
2104 }
2105
2106 /// Access the underlying data owned by this `Store`.
2107 ///
2108 /// Same as [`Store::data_mut`](crate::Store::data_mut)
2109 pub fn data_mut(&mut self) -> &mut T {
2110 self.store.data_mut()
2111 }
2112
2113 /// Returns the underlying [`Engine`] this store is connected to.
2114 pub fn engine(&self) -> &Engine {
2115 self.store.engine()
2116 }
2117
2118 /// Perform garbage collection.
2119 ///
2120 /// Same as [`Store::gc`](crate::Store::gc).
2121 #[cfg(feature = "gc")]
2122 pub fn gc(&mut self) {
2123 self.store.gc()
2124 }
2125
2126 /// Perform garbage collection asynchronously.
2127 ///
2128 /// Same as [`Store::gc_async`](crate::Store::gc_async).
2129 #[cfg(all(feature = "async", feature = "gc"))]
2130 pub async fn gc_async(&mut self)
2131 where
2132 T: Send,
2133 {
2134 self.store.gc_async().await;
2135 }
2136
2137 /// Returns the remaining fuel in the store.
2138 ///
2139 /// For more information see [`Store::get_fuel`](crate::Store::get_fuel)
2140 pub fn get_fuel(&self) -> Result<u64> {
2141 self.store.get_fuel()
2142 }
2143
2144 /// Set the amount of fuel in this store to be consumed when executing wasm code.
2145 ///
2146 /// For more information see [`Store::set_fuel`](crate::Store::set_fuel)
2147 pub fn set_fuel(&mut self, fuel: u64) -> Result<()> {
2148 self.store.set_fuel(fuel)
2149 }
2150
2151 /// Configures this `Store` to yield while executing futures every N units of fuel.
2152 ///
2153 /// For more information see
2154 /// [`Store::fuel_async_yield_interval`](crate::Store::fuel_async_yield_interval)
2155 pub fn fuel_async_yield_interval(&mut self, interval: Option<u64>) -> Result<()> {
2156 self.store.fuel_async_yield_interval(interval)
2157 }
2158}
2159
2160impl<T> AsContext for Caller<'_, T> {
2161 type Data = T;
2162 fn as_context(&self) -> StoreContext<'_, T> {
2163 self.store.as_context()
2164 }
2165}
2166
2167impl<T> AsContextMut for Caller<'_, T> {
2168 fn as_context_mut(&mut self) -> StoreContextMut<'_, T> {
2169 self.store.as_context_mut()
2170 }
2171}
2172
2173// State stored inside a `VMArrayCallHostFuncContext`.
2174struct HostFuncState<F> {
2175 // The actual host function.
2176 func: F,
2177
2178 // NB: We have to keep our `VMSharedTypeIndex` registered in the engine for
2179 // as long as this function exists.
2180 #[allow(dead_code)]
2181 ty: RegisteredType,
2182}
2183
2184#[doc(hidden)]
2185pub enum HostContext {
2186 Array(StoreBox<VMArrayCallHostFuncContext>),
2187}
2188
2189impl From<StoreBox<VMArrayCallHostFuncContext>> for HostContext {
2190 fn from(ctx: StoreBox<VMArrayCallHostFuncContext>) -> Self {
2191 HostContext::Array(ctx)
2192 }
2193}
2194
2195impl HostContext {
2196 fn from_closure<F, T, P, R>(engine: &Engine, func: F) -> Self
2197 where
2198 F: Fn(Caller<'_, T>, P) -> R + Send + Sync + 'static,
2199 P: WasmTyList,
2200 R: WasmRet,
2201 {
2202 let ty = R::func_type(engine, None::<ValType>.into_iter().chain(P::valtypes()));
2203 let type_index = ty.type_index();
2204
2205 let array_call = Self::array_call_trampoline::<T, F, P, R>;
2206
2207 let ctx = unsafe {
2208 VMArrayCallHostFuncContext::new(
2209 VMFuncRef {
2210 array_call,
2211 wasm_call: None,
2212 type_index,
2213 vmctx: ptr::null_mut(),
2214 },
2215 Box::new(HostFuncState {
2216 func,
2217 ty: ty.into_registered_type(),
2218 }),
2219 )
2220 };
2221
2222 ctx.into()
2223 }
2224
2225 unsafe extern "C" fn array_call_trampoline<T, F, P, R>(
2226 callee_vmctx: *mut VMOpaqueContext,
2227 caller_vmctx: *mut VMOpaqueContext,
2228 args: *mut ValRaw,
2229 args_len: usize,
2230 ) where
2231 F: Fn(Caller<'_, T>, P) -> R + 'static,
2232 P: WasmTyList,
2233 R: WasmRet,
2234 {
2235 // Note that this function is intentionally scoped into a
2236 // separate closure. Handling traps and panics will involve
2237 // longjmp-ing from this function which means we won't run
2238 // destructors. As a result anything requiring a destructor
2239 // should be part of this closure, and the long-jmp-ing
2240 // happens after the closure in handling the result.
2241 let run = move |mut caller: Caller<'_, T>| {
2242 let args =
2243 core::slice::from_raw_parts_mut(args.cast::<MaybeUninit<ValRaw>>(), args_len);
2244 let vmctx = VMArrayCallHostFuncContext::from_opaque(callee_vmctx);
2245 let state = (*vmctx).host_state();
2246
2247 // Double-check ourselves in debug mode, but we control
2248 // the `Any` here so an unsafe downcast should also
2249 // work.
2250 debug_assert!(state.is::<HostFuncState<F>>());
2251 let state = &*(state as *const _ as *const HostFuncState<F>);
2252 let func = &state.func;
2253
2254 let ret = 'ret: {
2255 if let Err(trap) = caller.store.0.call_hook(CallHook::CallingHost) {
2256 break 'ret R::fallible_from_error(trap);
2257 }
2258
2259 let mut store = if P::may_gc() {
2260 AutoAssertNoGc::new(caller.store.0)
2261 } else {
2262 unsafe { AutoAssertNoGc::disabled(caller.store.0) }
2263 };
2264 let params = P::load(&mut store, args);
2265 let _ = &mut store;
2266 drop(store);
2267
2268 let r = func(caller.sub_caller(), params);
2269 if let Err(trap) = caller.store.0.call_hook(CallHook::ReturningFromHost) {
2270 break 'ret R::fallible_from_error(trap);
2271 }
2272 r.into_fallible()
2273 };
2274
2275 if !ret.compatible_with_store(caller.store.0) {
2276 bail!("host function attempted to return cross-`Store` value to Wasm")
2277 } else {
2278 let mut store = if R::may_gc() {
2279 AutoAssertNoGc::new(caller.store.0)
2280 } else {
2281 unsafe { AutoAssertNoGc::disabled(caller.store.0) }
2282 };
2283 let ret = ret.store(&mut store, args)?;
2284 Ok(ret)
2285 }
2286 };
2287
2288 // With nothing else on the stack move `run` into this
2289 // closure and then run it as part of `Caller::with`.
2290 let result = crate::runtime::vm::catch_unwind_and_longjmp(move || {
2291 let caller_vmctx = VMContext::from_opaque(caller_vmctx);
2292 Caller::with(caller_vmctx, run)
2293 });
2294
2295 match result {
2296 Ok(val) => val,
2297 Err(err) => crate::trap::raise(err),
2298 }
2299 }
2300}
2301
2302/// Representation of a host-defined function.
2303///
2304/// This is used for `Func::new` but also for `Linker`-defined functions. For
2305/// `Func::new` this is stored within a `Store`, and for `Linker`-defined
2306/// functions they wrap this up in `Arc` to enable shared ownership of this
2307/// across many stores.
2308///
2309/// Technically this structure needs a `<T>` type parameter to connect to the
2310/// `Store<T>` itself, but that's an unsafe contract of using this for now
2311/// rather than part of the struct type (to avoid `Func<T>` in the API).
2312pub(crate) struct HostFunc {
2313 ctx: HostContext,
2314
2315 // Stored to unregister this function's signature with the engine when this
2316 // is dropped.
2317 engine: Engine,
2318}
2319
2320impl HostFunc {
2321 /// Analog of [`Func::new`]
2322 ///
2323 /// # Panics
2324 ///
2325 /// Panics if the given function type is not associated with the given
2326 /// engine.
2327 pub fn new<T>(
2328 engine: &Engine,
2329 ty: FuncType,
2330 func: impl Fn(Caller<'_, T>, &[Val], &mut [Val]) -> Result<()> + Send + Sync + 'static,
2331 ) -> Self {
2332 assert!(ty.comes_from_same_engine(engine));
2333 let ty_clone = ty.clone();
2334 unsafe {
2335 HostFunc::new_unchecked(engine, ty, move |caller, values| {
2336 Func::invoke_host_func_for_wasm(caller, &ty_clone, values, &func)
2337 })
2338 }
2339 }
2340
2341 /// Analog of [`Func::new_unchecked`]
2342 ///
2343 /// # Panics
2344 ///
2345 /// Panics if the given function type is not associated with the given
2346 /// engine.
2347 pub unsafe fn new_unchecked<T>(
2348 engine: &Engine,
2349 ty: FuncType,
2350 func: impl Fn(Caller<'_, T>, &mut [ValRaw]) -> Result<()> + Send + Sync + 'static,
2351 ) -> Self {
2352 assert!(ty.comes_from_same_engine(engine));
2353 let func = move |caller_vmctx, values: &mut [ValRaw]| {
2354 Caller::<T>::with(caller_vmctx, |mut caller| {
2355 caller.store.0.call_hook(CallHook::CallingHost)?;
2356 let result = func(caller.sub_caller(), values)?;
2357 caller.store.0.call_hook(CallHook::ReturningFromHost)?;
2358 Ok(result)
2359 })
2360 };
2361 let ctx = crate::trampoline::create_array_call_function(&ty, func)
2362 .expect("failed to create function");
2363 HostFunc::_new(engine, ctx.into())
2364 }
2365
2366 /// Analog of [`Func::wrap_inner`]
2367 pub fn wrap_inner<F, T, Params, Results>(engine: &Engine, func: F) -> Self
2368 where
2369 F: Fn(Caller<'_, T>, Params) -> Results + Send + Sync + 'static,
2370 Params: WasmTyList,
2371 Results: WasmRet,
2372 {
2373 let ctx = HostContext::from_closure(engine, func);
2374 HostFunc::_new(engine, ctx)
2375 }
2376
2377 /// Analog of [`Func::wrap`]
2378 pub fn wrap<T, Params, Results>(
2379 engine: &Engine,
2380 func: impl IntoFunc<T, Params, Results>,
2381 ) -> Self {
2382 let ctx = func.into_func(engine);
2383 HostFunc::_new(engine, ctx)
2384 }
2385
2386 /// Requires that this function's signature is already registered within
2387 /// `Engine`. This happens automatically during the above two constructors.
2388 fn _new(engine: &Engine, ctx: HostContext) -> Self {
2389 HostFunc {
2390 ctx,
2391 engine: engine.clone(),
2392 }
2393 }
2394
2395 /// Inserts this `HostFunc` into a `Store`, returning the `Func` pointing to
2396 /// it.
2397 ///
2398 /// # Unsafety
2399 ///
2400 /// Can only be inserted into stores with a matching `T` relative to when
2401 /// this `HostFunc` was first created.
2402 pub unsafe fn to_func(self: &Arc<Self>, store: &mut StoreOpaque) -> Func {
2403 self.validate_store(store);
2404 let me = self.clone();
2405 Func::from_func_kind(FuncKind::SharedHost(me), store)
2406 }
2407
2408 /// Inserts this `HostFunc` into a `Store`, returning the `Func` pointing to
2409 /// it.
2410 ///
2411 /// This function is similar to, but not equivalent, to `HostFunc::to_func`.
2412 /// Notably this function requires that the `Arc<Self>` pointer is otherwise
2413 /// rooted within the `StoreOpaque` via another means. When in doubt use
2414 /// `to_func` above as it's safer.
2415 ///
2416 /// # Unsafety
2417 ///
2418 /// Can only be inserted into stores with a matching `T` relative to when
2419 /// this `HostFunc` was first created.
2420 ///
2421 /// Additionally the `&Arc<Self>` is not cloned in this function. Instead a
2422 /// raw pointer to `Self` is stored within the `Store` for this function.
2423 /// The caller must arrange for the `Arc<Self>` to be "rooted" in the store
2424 /// provided via another means, probably by pushing to
2425 /// `StoreOpaque::rooted_host_funcs`.
2426 ///
2427 /// Similarly, the caller must arrange for `rooted_func_ref` to be rooted in
2428 /// the same store.
2429 pub unsafe fn to_func_store_rooted(
2430 self: &Arc<Self>,
2431 store: &mut StoreOpaque,
2432 rooted_func_ref: Option<NonNull<VMFuncRef>>,
2433 ) -> Func {
2434 self.validate_store(store);
2435
2436 if rooted_func_ref.is_some() {
2437 debug_assert!(self.func_ref().wasm_call.is_none());
2438 debug_assert!(matches!(self.ctx, HostContext::Array(_)));
2439 }
2440
2441 Func::from_func_kind(
2442 FuncKind::RootedHost(RootedHostFunc::new(self, rooted_func_ref)),
2443 store,
2444 )
2445 }
2446
2447 /// Same as [`HostFunc::to_func`], different ownership.
2448 unsafe fn into_func(self, store: &mut StoreOpaque) -> Func {
2449 self.validate_store(store);
2450 Func::from_func_kind(FuncKind::Host(Box::new(self)), store)
2451 }
2452
2453 fn validate_store(&self, store: &mut StoreOpaque) {
2454 // This assert is required to ensure that we can indeed safely insert
2455 // `self` into the `store` provided, otherwise the type information we
2456 // have listed won't be correct. This is possible to hit with the public
2457 // API of Wasmtime, and should be documented in relevant functions.
2458 assert!(
2459 Engine::same(&self.engine, store.engine()),
2460 "cannot use a store with a different engine than a linker was created with",
2461 );
2462 }
2463
2464 pub(crate) fn sig_index(&self) -> VMSharedTypeIndex {
2465 self.func_ref().type_index
2466 }
2467
2468 pub(crate) fn func_ref(&self) -> &VMFuncRef {
2469 match &self.ctx {
2470 HostContext::Array(ctx) => unsafe { (*ctx.get()).func_ref() },
2471 }
2472 }
2473
2474 pub(crate) fn host_ctx(&self) -> &HostContext {
2475 &self.ctx
2476 }
2477
2478 fn export_func(&self) -> ExportFunction {
2479 ExportFunction {
2480 func_ref: NonNull::from(self.func_ref()),
2481 }
2482 }
2483}
2484
2485impl FuncData {
2486 #[inline]
2487 fn export(&self) -> ExportFunction {
2488 self.kind.export()
2489 }
2490
2491 pub(crate) fn sig_index(&self) -> VMSharedTypeIndex {
2492 unsafe { self.export().func_ref.as_ref().type_index }
2493 }
2494}
2495
2496impl FuncKind {
2497 #[inline]
2498 fn export(&self) -> ExportFunction {
2499 match self {
2500 FuncKind::StoreOwned { export, .. } => *export,
2501 FuncKind::SharedHost(host) => host.export_func(),
2502 FuncKind::RootedHost(rooted) => ExportFunction {
2503 func_ref: NonNull::from(rooted.func_ref()),
2504 },
2505 FuncKind::Host(host) => host.export_func(),
2506 }
2507 }
2508}
2509
2510use self::rooted::*;
2511
2512/// An inner module is used here to force unsafe construction of
2513/// `RootedHostFunc` instead of accidentally safely allowing access to its
2514/// constructor.
2515mod rooted {
2516 use super::HostFunc;
2517 use crate::runtime::vm::{SendSyncPtr, VMFuncRef};
2518 use alloc::sync::Arc;
2519 use core::ptr::NonNull;
2520
2521 /// A variant of a pointer-to-a-host-function used in `FuncKind::RootedHost`
2522 /// above.
2523 ///
2524 /// For more documentation see `FuncKind::RootedHost`, `InstancePre`, and
2525 /// `HostFunc::to_func_store_rooted`.
2526 pub(crate) struct RootedHostFunc {
2527 func: SendSyncPtr<HostFunc>,
2528 func_ref: Option<SendSyncPtr<VMFuncRef>>,
2529 }
2530
2531 impl RootedHostFunc {
2532 /// Note that this is `unsafe` because this wrapper type allows safe
2533 /// access to the pointer given at any time, including outside the
2534 /// window of validity of `func`, so callers must not use the return
2535 /// value past the lifetime of the provided `func`.
2536 ///
2537 /// Similarly, callers must ensure that the given `func_ref` is valid
2538 /// for the lifetime of the return value.
2539 pub(crate) unsafe fn new(
2540 func: &Arc<HostFunc>,
2541 func_ref: Option<NonNull<VMFuncRef>>,
2542 ) -> RootedHostFunc {
2543 RootedHostFunc {
2544 func: NonNull::from(&**func).into(),
2545 func_ref: func_ref.map(|p| p.into()),
2546 }
2547 }
2548
2549 pub(crate) fn func(&self) -> &HostFunc {
2550 // Safety invariants are upheld by the `RootedHostFunc::new` caller.
2551 unsafe { self.func.as_ref() }
2552 }
2553
2554 pub(crate) fn func_ref(&self) -> &VMFuncRef {
2555 if let Some(f) = self.func_ref {
2556 // Safety invariants are upheld by the `RootedHostFunc::new` caller.
2557 unsafe { f.as_ref() }
2558 } else {
2559 self.func().func_ref()
2560 }
2561 }
2562 }
2563}
2564
2565#[cfg(test)]
2566mod tests {
2567 use super::*;
2568 use crate::Store;
2569
2570 #[test]
2571 fn hash_key_is_stable_across_duplicate_store_data_entries() -> Result<()> {
2572 let mut store = Store::<()>::default();
2573 let module = Module::new(
2574 store.engine(),
2575 r#"
2576 (module
2577 (func (export "f")
2578 nop
2579 )
2580 )
2581 "#,
2582 )?;
2583 let instance = Instance::new(&mut store, &module, &[])?;
2584
2585 // Each time we `get_func`, we call `Func::from_wasmtime` which adds a
2586 // new entry to `StoreData`, so `f1` and `f2` will have different
2587 // indices into `StoreData`.
2588 let f1 = instance.get_func(&mut store, "f").unwrap();
2589 let f2 = instance.get_func(&mut store, "f").unwrap();
2590
2591 // But their hash keys are the same.
2592 assert!(
2593 f1.hash_key(&mut store.as_context_mut().0)
2594 == f2.hash_key(&mut store.as_context_mut().0)
2595 );
2596
2597 // But the hash keys are different from different funcs.
2598 let instance2 = Instance::new(&mut store, &module, &[])?;
2599 let f3 = instance2.get_func(&mut store, "f").unwrap();
2600 assert!(
2601 f1.hash_key(&mut store.as_context_mut().0)
2602 != f3.hash_key(&mut store.as_context_mut().0)
2603 );
2604
2605 Ok(())
2606 }
2607}